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1. Executive Summary 
The SMUD PowerMinder pilot provides customer incentives for enrolling their internet-
connected heat-pump water heaters in the pilot by registering and connecting their device to 
the Virtual Peaker platform. The pilot partners with Virtual Peaker software, which uses cost 

optimization algorithms to use the water heater as load-shifting energy storage. During event 
days, the software uses California ISO day-ahead pricing data to minimize energy cost to SMUD. 
During non-event days, the software minimizes costs to participants using SMUD’s residential 

Time-of-Day Rate. As of December 2020, the pilot has 94 participants. Of these participants, 74 
replaced gas units, 11 replaced electric units, and 9 baseline units are unknown.  

The SMUD PowerMinder pilot has been evaluated using statistical and physical models and is 
shown to save energy, reduce emissions, and reduce energy bills for participating customers.  
The statistical model utilizes whole-house meter data for the participants and a control group 

feeding into a neural network to calculate the overall impact of the water heater and the 
software. The physical model utilizes data from the water heaters themselves to investigate 
their operation, including disaggregating the use of the integrated resistance heaters. The 

results of the analysis are shown in Table 1: Average annual per-household analysis results.. 
Values are average per-household on an annual basis.  

Table 1: Average annual per-household analysis results. 

 

The analysis had some challenges which can be addressed in future work. The sample size is 
small for residential statistical analyses, especially in the case of only 11 electric resistance 

heater replacements. Regarding evaluation of the  software, impact analysis would be 
improved if the software also operated in baseline mode (no optimization) for some days of the 
week as part of a future study.  

Energy Saved 1,027 kWh annually

Emissions Reduced 227 kg CO2 annually

Customer Cost Savings 140 Dollars annually before rebates

Customer Cost Savings 164 Dollars annually with $2/mo rebate

Gas Usage Displaced 104 therms annually

Emissions Reduced 444 kg CO2 annually

Customer Cost Savings 31 Dollars annually before rebates

Customer Cost Savings 55 Dollars annually with $2/mo rebate

Replacing electric water heater: 

Replacing Gas Water Heater: 
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2. Project Introduction 
Under a contract with SMUD, ADM Associates and the Electric Power Research Institute (EPRI) 

evaluated the PowerMinder thermal storage load-shifting pilot. This pilot incentivizes 
residential customers to enroll their heat pump water heater and allow SMUD to optimize their 
heat pump water heater on their behalf.  The pilot has a partnership with Virtual Peaker whose 

software optimizes water heater energy consumption to minimize costs to the customer by 
using pricing data and treating the water tank as a thermal energy storage system. As of 
December 2020, there were 94 pilot participants, 74 of which replaced a gas heater, 11 

participants replaced an electric resistance heater, and 9 had unknown baseline fuel.  

An illustration showing the operation of a heat pump water heater is shown in Figure 1. The 

heat pump tends to be located at the top of the unit and has a channel for air to enter and exit 
the unit to exchange heat. To heat the water, the heat pump working fluid is sent through a 
submerged condenser coil. The working fluid transfers energy from the air to the water in the 

tank, providing hot water with lower energy consumption than conventional electric resistance 
water heaters. The increased heating efficiency results in emissions and cost reductions over 
conventional electric water heaters. However, many heat pump water heaters, including the 

units in this study, are equipped with resistance heaters to meet periods of high demand. The 
overall performance of the heat pumps must account for all operating modes, since efficiency is 
reduced while resistance heating.   

 

Figure 1: Illustration showing how a heat pump water heater operates.1 

 
1 NREL report: Field Performance of Heat Pump Water Heaters in the Northeast 
https://www.nrel.gov/docs/fy16osti/64904.pdf 
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Heat pump water heaters also provide significant energy reductions over conventional gas 
water heaters. Conventional gas heaters burn gas directly below the storage tank to heat water. 
This results in a faster rate of replacement of hot water but comes with associated 

inefficiencies. Approximately 60% of the chemical energy contained in the fuel is transferred to 
the water, and the remaining 40% is lost to the environment by venting combustion by-
products or through heat-leakage. 

The Virtual Peaker software uses the water heater as a form of energy storage to shift the load 
into periods with lower energy costs. During non-event days, the system optimizes to SMUD’s 

residential Time-of-Day (TOD) Rate, shown in Figure 2. During event days, the software 
optimizes for wholesale market (CAISO) rates. Load shifting technologies have slightly higher 
power consumption overall due to thermal losses of the water in the tank. Hot water is stored 

for longer periods of time at higher temperatures. However, heat pumps are superior 
technologies compared to electric resistance and gas options, and electricity consumed during 
peak times is often environmentally detrimental, so overall the pilot impact is positive.  

 

Figure 2: SMUD residential rates. On non-event days, PowerMinder optimizes operation to 
minimize cost. 
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3. Energy Use Analysis 
This section discusses the analytical methodologies conducted to provide estimates of pilot 

impacts such as the annual energy impact, peak energy impact, event energy impact, etc. due 
to participation in the PowerMinder pilot. 

The first activity in analyzing pilot energy impacts involved acquiring and cleaning relevant 
datasets. The datasets utilized in the analysis are the following: 

• Participant Tracking Data – contained standard participant premise information such as 
the installed tank size, whether the unit replaced a gas or electric water heater, and an 

account number for mapping to other data sets. 

• Total Premise Electricity Consumption Data – contained hourly interval time-series data 

on energy consumption (in kWh). 

• Heat Pump Water Heater (HPWH) Consumption Data – contained 15-minute interval 

time-series data on heat pump water heater consumption (in kWh). 

• Weather Data – pulled from the National Oceanic & Atmospheric Administration climate 

data for Sacramento Executive Airport, McClellan Airport, and Sacramento International 

Airport. 

• Event & Electricity Rate Data – contains California ISO electricity rates (dollar per kWh) at 

hourly intervals along with dates on which events occurred. 

• Control Group Data – contains total premise electricity consumption data for a random 

sample of 2,000 homes in SMUD territory stratified by zip code to match participant zip 

code distribution.  

All datasets were cleaned and merged into a single panel time-series data set at hourly 
intervals. Data was aggregated into multiple variations to visualize the energy consumption of 
the heat pump water heaters to better understand their performance.  

The annual impact of the retrofits was calculated using two methods, statistical modeling of  the 
average household consumption, and physical consumption of the individual heaters. The 

statistical model utilized a neural network with a control group to account for factors like 
economic change and COVID affects to isolate the retrofit but is subject to error common with 
modeling human activity for a small sample. The physical model gives less information on 

whether the water consumption during the time period is typical (a consideration of interest 
during the pandemic), but it is simple and accurate for basic calculations. It is less sensitive to 
exogenous effects like COVID-related patterns of energy use, and it is able to account for 

hardware-related energy uses such as the use of backup resistance heaters.  

3.1. Impact of Event Days 
The purpose of the PowerMinder pilot is to shift residential electric hot water heating load 

away from times in which SMUD is expected to approach peak capacity, and to save pilot 
participants money. Taking advantage of HPWH’s high thermal efficiency, during event days 
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HPWHs that are enrolled in the pilot will have their temperature settings temporarily adjusted 
to overheat hot water stored in the HPWH during periods of time when the electric grid is 

predicted to have greater capacity. This overheated water is then mixed with cold water via a 
mixing valve to achieve the customer’s desired water temperature. The Virtual Peaker software 
utilizes day-ahead pricing to approximate when grid capacity is highest v. lowest and benefits 

both the utility and the customer by reducing demand during peak hours and shifting energy 
usage to periods of time when costs to the customer and utility are lower. 

Figure 3 presents the average daily load profile for HPWHs on event and non-event days as well 
as the hourly wholesale price per kWh. From the plot, it appears that the morning and evening 
loads are temporally shifted relative to the morning and evening peak price  on event days. This 

is further evidenced in Figure 4, which shows a tighter distribution around an earlier peak both 
in the morning and afternoon, suggesting that the HPWHs are being pre-heated in advance of 
the peak price. 

 

 

Figure 3: Event impact and cost by hour. During the event (right image) the energy consumption 

(blue line) shows some pre-heating before the cost peaks (red line). 
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Figure 4: Average heat pump water heater energy consumption during event days (blue) and 

non-event days (red). The morning peak appears lower on event days but the afternoon peak 
appears higher. 

To confirm whether event days had a significant impact on the 24-hour load profile of HPWHs, 
a statistical analysis was performed on the following parameters: 

- A regression analysis was performed to determine whether there was a significant 
difference in the time of the morning and afternoon peak on event v. non-event days, 

- A regression analysis was performed to determine whether there was a significant 

difference in the HPWH load at the peak price on event v. non-event days, 
- A regression analysis was performed to determine whether there was a significant 

difference in HPWH hours of use between event v. non-event days, 

- A regression analysis was performed to determine whether there was a difference in the 
total kWh consumed on event v. non-event days. 

For all analyses, data was restricted to the time between March 11, 2020 and December 17, 
2020—the dates at which the first and last HPWH event occurred. Additionally, cluster-robust 
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standard errors were used throughout all regression analyses to correct for usage of panel data 
in linear regression.2 

Peak Time Analysis 

To determine whether there is a significant difference in the time of the morning (before 12 
p.m.) and afternoon (after 12 p.m.) peaks for event v. non-event days, we first isolated the peak 

hour for the morning and afternoon for each day for each customer by f inding the hour in the 
morning and afternoon at which the highest energy demand for HPWHs occurred. A regression 
analysis was then performed for mornings and afternoons separately using the following 
equation: 

𝑝𝑒𝑎𝑘  ℎ𝑜𝑢𝑟𝑖 = 𝛼 +  𝛽1𝑎 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  … +   𝛽1𝑛 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛  +  𝛽2𝑎 ∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  + …  
+  𝛽2𝑛 ∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝜀 

Where: 

- 𝑝𝑒𝑎𝑘  ℎ𝑜𝑢𝑟𝑖  represents the hour at which the morning or afternoon peak occurs for each 
customer for each day, 

- 𝑚𝑜𝑛𝑡ℎ𝑎 through 𝑚𝑜𝑛𝑡ℎ𝑛 are indicator variables that represents each month 

represented in the data set, 
- 𝑒𝑣𝑒𝑛𝑡  is an indicator variable that represents event days v. non-event days, 
- 𝛽1𝑎  through 𝛽1𝑛  represent the main effect of month on peak hour, 

- 𝛽2𝑎  through 𝛽2𝑛, the parameters of interest, represent the difference in peak hour 
between event and non-event days, 

- 𝛼 is the intercept, and 

- 𝜀 is the error term. 

The results of this analysis are presented in Table 2. Values in the Difference column represent 

the non-event peak hour minus the event peak hour. In general, there is a statistically 
significant decrease in the morning peak on event days for most months except March, July, 
and August, which show no difference in the peak hour. Despite this shift being statistically 

significant, the impact is minimal, with the difference being approximately four minutes at the 
lowest and 20 minutes at the highest. 

A similar pattern emerges for the afternoon peak, with most months showing a statistically 
significant decrease in the peak hour except for: March, November, and December, in which 
the decrease is not statistically significant; and April, in which there is a statistically significant 

increase in the peak hour. As with the morning peak, the magnitude is on the order of 
approximately four minutes to 11 minutes. 

 
2 https://cran.r-project.org/web/packages/clubSandwich/vignettes/panel-data-CRVE.html 
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Table 2: Peak Hour for Non-Event and Event Days 

Morning or 
Afternoon 

Month 
Peak Hour 
(Non-Event 

Days) 

Peak Hour 
(Event 
Days) 

Difference 
(Hours) 

P-
Value 

Statistically 
Significant? 

(p < 0.05) 

Morning 3 5.40 5.38 0.03 0.71 No 

Morning 4 5.53 5.27 0.26 0.00 Yes 

Morning 5 5.50 5.42 0.08 0.00 Yes 

Morning 6 5.69 5.40 0.28 0.00 Yes 

Morning 7 5.43 5.42 0.01 0.70 No 

Morning 8 5.52 5.61 -0.09 0.20 No 

Morning 9 5.53 5.47 0.06 0.04 Yes 

Morning 10 5.48 5.35 0.13 0.00 Yes 

Morning 11 5.58 5.46 0.13 0.00 Yes 

Morning 12 5.72 5.39 0.33 0.00 Yes 

Afternoon 3 17.93 18.04 -0.10 0.45 No 

Afternoon 4 17.81 18.00 -0.19 0.03 Yes 

Afternoon 5 17.62 17.56 0.06 0.04 Yes 

Afternoon 6 17.44 17.31 0.14 0.00 Yes 

Afternoon 7 17.47 17.26 0.20 0.00 Yes 

Afternoon 8 17.38 17.27 0.12 0.03 Yes 

Afternoon 9 17.56 17.38 0.18 0.00 Yes 

Afternoon 10 17.61 17.54 0.07 0.03 Yes 

Afternoon 11 17.73 17.68 0.04 0.25 No 

Afternoon 12 17.72 17.68 0.04 0.61 No 

 

HPWH Load at Peak Price Analysis 

Although the analysis on pilot impact on peak time yielded a statistically significant shift in the 

timing of the morning and afternoon peak, the magnitude of the impact was within a few 
minutes to up to 20 minutes, rather than shifting the peak HPWH load by hours. Thus, we 
sought to see whether the pilot was effective at reducing electric demand from HPWHs during 

the periods at which grid capacity was lowest. To accomplish this, we used peak pricing as a 
proxy for peak grid demand and isolated, for both mornings and afternoons, the hours at which 
the price per kWh was highest. A regression analysis was then performed for mornings and 

afternoons separately using the following equation: 

𝑘𝑊ℎ𝑖 = 𝛼 +  𝛽1𝑎 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  …  +   𝛽1𝑛 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝛽2𝑎 ∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  …  +  𝛽2𝑛

∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝜀 
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Where: 

- 𝑘𝑊ℎ𝑖  represents the energy consumed by HPWHs during the hours at which energy 
cost was highest for each day for each customer, 

- 𝑚𝑜𝑛𝑡ℎ𝑎 through 𝑚𝑜𝑛𝑡ℎ𝑛 are indicator variables that represents each month 

represented in the data set, 
- 𝑒𝑣𝑒𝑛𝑡  is an indicator variable that represents event days v. non-event days, 
- 𝛽1𝑎  through 𝛽1𝑛  represent the main effect of month on kWh, 

- 𝛽2𝑎  through 𝛽2𝑛, the parameters of interest, represent the difference in kWh during 
peak price hours between event and non-event days, 

- 𝛼 is the intercept, and 

- 𝜀 is the error term. 

The results of this analysis are presented in Table 3. In general, the pilot had a mixed effect on 

the demand associated with HPWHs during the grid peak on event days. Four months out of 10 
showed a statistically significant difference in HPWH demand during the morning grid peak, 
with a statistically significant reduction in demand for May, June, August, and October. An 

inverted effect was observed for afternoons, however. HPWH demand showed a statistically 
significant increase during the afternoon grid peak for April, May, and September.   

Table 3: HPWH Load at Peak Price for Non-Event and Event Days 

Morning or 
Afternoon 

Month 
kWh (Non-
Event Days) 

kWh (Event 
Days) 

Difference 
(kWh) 

P-
Value 

Statistically 
Significant? 

(p < 0.05) 

Morning 3 0.18 0.11 0.07 0.05 No 

Morning 4 0.13 0.11 0.01 0.52 No 

Morning 5 0.09 0.06 0.03 0.03 Yes 

Morning 6 0.11 0.07 0.03 0.04 Yes 

Morning 7 0.06 0.07 -0.01 0.44 No 

Morning 8 0.06 0.04 0.02 0.05 Yes 

Morning 9 0.05 0.05 0.00 0.63 No 

Morning 10 0.12 0.08 0.04 0.00 Yes 

Morning 11 0.15 0.14 0.01 0.75 No 

Morning 12 0.17 0.16 0.01 0.75 No 

Afternoon 3 0.15 0.28 -0.12 0.07 No 

Afternoon 4 0.15 0.24 -0.08 0.00 Yes 

Afternoon 5 0.09 0.13 -0.04 0.00 Yes 

Afternoon 6 0.07 0.10 -0.03 0.09 No 

Afternoon 7 0.06 0.06 0.00 0.97 No 

Afternoon 8 0.07 0.06 0.01 0.61 No 
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Afternoon 9 0.08 0.12 -0.03 0.00 Yes 

Afternoon 10 0.10 0.12 -0.02 0.11 No 

Afternoon 11 0.16 0.15 0.02 0.50 No 

Afternoon 12 0.10 0.13 -0.02 0.20 No 

 

Hours of Use Analysis 

In addition to looking at the pilot’s impact on shifting peak load, we also reviewed whether 
there was a significant change in the hours of use (HOU) associated with event v. non-event 

days. To accomplish this, for each customer and each day, we counted the number of hours 
that exhibited some level of HPWH energy consumption, regardless of the magnitude. A 
regression analysis was then performed using the following equation: 

𝐻𝑂𝑈𝑖 = 𝛼 +  𝛽1𝑎 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  …  +   𝛽1𝑛 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝛽2𝑎 ∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  … +  𝛽2𝑛

∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝜀 

Where: 

- 𝐻𝑂𝑈𝑖  represents the number of hours the HPWHs were active for each day for each 
customer, 

- 𝑚𝑜𝑛𝑡ℎ𝑎 through 𝑚𝑜𝑛𝑡ℎ𝑛 are indicator variables that represents each month 

represented in the data set, 
- 𝑒𝑣𝑒𝑛𝑡  is an indicator variable that represents event days v. non-event days, 
- 𝛽1𝑎  through 𝛽1𝑛  represent the main effect of month on HOU, 

- 𝛽2𝑎  through 𝛽2𝑛, the parameters of interest, represent the difference in HOU between 
event and non-event days, 

- 𝛼 is the intercept, and 
- 𝜀 is the error term. 

The results of this analysis are presented in Table 4. Six of the ten months showed a statistically 

significant difference in the HOU associated with HPWHs for event days when compared to 
non-event days. For March, May, August, October, and December, the HOU for HPWHs was 
significantly reduced during event days. For June, the HOU significantly increased.  This may 

suggest that the pilot is achieving part of its goal in reducing HPWH load distribution by 
overheating water during specific periods of time, reducing the overall need for the HPWH to 
continue heating water during other periods of time. 
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Table 4: HOU for Non-Event and Event Days 

Month 
HOU (Non-
Event Days) 

HOU (Event 
Days) 

Difference 
(HOU) 

P-
Value 

Statistically 
Significant? 

(p < 0.05) 

3 9.74 8.64 1.10 0.01 Yes 

4 8.62 8.29 0.34 0.24 No 

5 7.63 7.19 0.44 0.04 Yes 

6 6.23 6.92 -0.69 0.00 Yes 

7 6.37 6.12 0.24 0.14 No 

8 6.27 5.84 0.43 0.02 Yes 

9 5.96 6.25 -0.29 0.24 No 

10 7.80 7.01 0.79 0.00 Yes 

11 8.79 8.84 -0.04 0.81 No 

12 10.20 9.56 0.64 0.02 Yes 

 

Daily HPWH Energy Consumption Analysis 

Although the HPWH events primarily targeted load shifting rather than energy efficiency, to 
fully describe the potential impact of the pilot, we also looked at whether there was a 
significant difference in the daily HPWH energy consumption on event v. non-event days. A 

regression analysis was then performed using the following equation: 

𝑘𝑊ℎ𝑖 = 𝛼 +  𝛽1𝑎 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  …  +   𝛽1𝑛 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝛽2𝑎 ∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑎  +  …  +  𝛽2𝑛

∙ 𝑒𝑣𝑒𝑛𝑡 ∙ 𝑚𝑜𝑛𝑡ℎ𝑛 +  𝜀 

Where: 

- 𝑘𝑊ℎ𝑖  represents the total kWh consumed by the HPWHs for each day for each 
customer, 

- 𝑚𝑜𝑛𝑡ℎ𝑎 through 𝑚𝑜𝑛𝑡ℎ𝑛 are indicator variables that represents each month 
represented in the data set, 

- 𝑒𝑣𝑒𝑛𝑡  is an indicator variable that represents event days v. non-event days, 

- 𝛽1𝑎  through 𝛽1𝑛  represent the main effect of month on kWh, 
- 𝛽2𝑎  through 𝛽2𝑛, the parameters of interest, represent the difference in kWh between 

event and non-event days, 
- 𝛼 is the intercept, and 

- 𝜀 is the error term. 

The results of this analysis are presented in Table 5. Of the 10 months, May, October, and 
November showed a statistically significant reduction in HPWH consumption during event days 
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while June and July showed a statistically significant increase in HPWH consumption during 
event days. 

Table 5: HOU for Non-Event and Event Days 

Month 
Daily kWh 
(Non-Event 

Days) 

Daily kWh 
(Event 
Days) 

Difference 
(Daily kWh) 

P-
Value 

Statistically 
Significant? 

(p < 0.05) 

3 3.29 3.30 0.00 0.98 No 

4 3.08 2.96 0.12 0.42 No 

5 1.93 1.66 0.27 0.00 Yes 

6 1.60 1.89 -0.28 0.00 Yes 

7 1.58 1.76 -0.18 0.00 Yes 

8 1.60 1.57 0.03 0.61 No 

9 1.58 1.68 -0.10 0.22 No 

10 2.00 1.62 0.38 0.00 Yes 

11 2.75 2.53 0.23 0.02 Yes 

12 3.02 2.73 0.29 0.13 No 

 

3.2. Statistical Model 
The neural network statistical model predicts premise energy consumption as a function of 
temperature, event day, hour of day, day of week, and other factors. The applied methodology 

involved the development of a synthetic baseline model trained on pre -period consumption 
data that could then predict consumption in the post-period. The difference between the 
predicted and actual consumption data in the post-period averaged across an entire year 
provided the estimate for savings. A control group of 2,000 randomly sampled homes was used 

to control for other variables, such as economic growth and the pandemic, to better isolate the 
impact of the retrofit itself.  

To start, the analysis was split into two separate cohorts; defined by whether the installed 
HPWH replaced an electric or gas water heater. Because the gas replacement premises would 
not have any reported electricity consumption due to water heating in their pre -period they 

had to be treated separately as an accurate model would predict increased electricity 
consumption after installation of the HPWH. Of the 94 unique participants in the tracking data, 
74 were identified as having replaced a gas water heater, while 11 had replaced an electric 

water heater (with the remainder unknown). Pre- and post-periods were defined for each 
premise based on the earliest available timestamp for that premise’s heat pump water heater 
consumption data.  
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The synthetic baseline model was built using a neural network with the Keras framework. It 
consists of a sequential feed forward architecture shown in Figure 5, below. The training set 

consisted of 70% of the total pre-period data, selected at random, with the validation set 
making up the remaining 30% of data points. Four input parameters were  used to develop 
predictions: the month, hour, day of the week, and temperature. The model attempted to 

minimize mean-squared-error as its measure of loss and used the Adam optimizer. 

 

 

 

 

In the case of the electric replacement homes, the trained model can then be applied to the 
post-period data to develop a predicted energy consumption; the difference between the 
predicted and actual consumption averaged across a full year provides the estimate of average 

hourly savings due to the installation of the heat pump water heater. Alternative confounding 
effects across time are accounted for by repeating the process with a control group premise set 
and removing the estimated consumption change. 

Alternative confounding effects across time are accounted for by repeating the process with a 
control group premise set and removing the estimated consumption change. The control group 

was developed by identifying, for each treatment premise, a corresponding control premise 
with the closest matching average hourly energy consumption across identical time periods.  

For gas replacement premises, this neural net model can show changes in consumption by 
adding the heater to the electric load but the gas usage is not modeled. Analysis of gas usage is 
explained in later sections using heat pump water heater data. Electricity cost will be higher 

with a gas replacement due to the fuel switch. Gas efficiency was developed using efficiency 
factors from a NREL paper on water heater efficiencies.3  

For the ten treatment premises that had an electric water heater replaced, the analysis found 
an annual energy savings estimate of .142 kWh in the post-period. Annually, this equates to 
1,245 kWh saved per premise installing the smart heat pump water heater. Due to the small 

population size, the root mean squared error is quite high: 3,791 kWh. Qualitatively, this result 
can be interpreted by saying that while the average home was likely to reduce their energy 
consumption through the HPWH installation, some premises showed an increase in energy 

 
3 Comparison of Advanced Residential Water Heating Technologies in the United States, NREL.gov. 
https://www.nrel.gov/docs/fy13osti/55475.pdf, accessed 4/23/2021. 

Figure 5: Neural Network Architecture for Synthetic Baseline Model 

https://www.nrel.gov/docs/fy13osti/55475.pdf
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consumption likely due to confounding effects that we could not conclude to be due to 
confounding effects. Higher population counts could help support this result. 

Evaluation of the control group alone, comparing the predicted and actual consumption, 
showed a difference of .014 kWh. This indicates that the control group, also consisting of 10 

premises matching the pre-period energy consumption of the treatment group, did not 
undergo significant energy consumption changes across the intervention effect. While it’s 
difficult to draw absolute conclusions based on the population size, it suggests a scenario where 

there were no large changes in external variables (no changes in premise occupancy, no 
changes due to COVID stay-at-home orders, etc.) or where the changes balanced out. Multiple 
control group sets were evaluated to ensure this result stayed approximately consistent.  

Figure 3 shows the average daily modeled and actual energy consumption across the pre- and 
post-periods. HPWH consumption data is also shown for context relative to the total.  

 

The demand reduction estimate used the same procedure as the annual savings analysis, but by 
filtering the savings curve to the peak hours in the peak month and averaging the hourly savings 

Figure 6: Comparison of energy consumption across time domains 
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result. The peak, in this case, was determined by the exact hour in which premise energy 
consumption was highest. The peak was found to be in July for the hour between 6 PM – 7 PM. 

The demand reduction was found to be .69 ± .46 kW. 

 

The neural net approach was useful for investigating the impact of the combination of 

hardware and the software algorithms, but it is difficult to separate the magnitute of the 
affects. The physics-based approach explained in the following section is able to separate out 
the resistance heating from the heat pump operation.  

3.3. Individual Water Heater Analysis 
Heat pump water heaters primarily use the heat pump to heat the water in the storage tank. 
However, the heating power provided by the heat pump is generally limited and is smaller than 
the heating power of the resistance element or gas burner of similarly sized conventional 

storage heaters. As a result, the charging process for heat pump water heaters is generally 
slower. To prevent cases where end users do not have sufficient hot water to meet their needs 
(generally cases where water use is higher than normal, e.g., when guests are present), heat 

pump water heaters use a backup resistance element to augment the heating provided by the 
heat pump. The resistance element is activated when the temperature at a specific location in 
the tank, as measured by a temperature sensor, goes below a certain threshold.  

The power consumption of a typical water heater in the fleet is shown in Figure 7. The 
operation of the resistance element is clearly identifiable. Inspection of the figure also reveals 

that power measured when the heater is active is not at specific levels, as one would expect 
given that both the heat pump and the resistance element operate at specific power levels, but 
rather it is continuous. 

 

Figure 7: heater power as a function of time for the entire test period (left) and for one 
week (right) 
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The reason is that the heat pump, the resistance element, or both may be active for only part of 
the time during each hour-long sampling period. However, it is clear from the figure that there 
are two modes of operation: heat pump only, and heat pump plus resistance heater. Because 

the efficiency of each component in converting electric power to heat used to heat water is 
different, it is important to distinguish between the two. 

As a first approximation, we consider all power above a threshold as resistance power, and all 
power levels below the threshold (including the portion of power at any given time that is 
below the threshold) as heat pump power. 

To ensure that there is a common threshold, independent of heat pump manufacturer and 

model (at least to a first approximation), we sampled and binned the power level for all heaters 
over the entire test period. The results of the process, in the form of probability density 
functions (PDFs) for the power level for each individual heat pump water heater, are shown in 

Figure 8. 

 

There is a primary peak at 0 power, as expected since the water heaters spend most of the time 
inactive, and a secondary peak at around 0.4 kW (this depends on the water heater in question, 

 

Figure 8: approximate probability density functions for power for individual heat pump 
water heaters 
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but this is a reasonable generalization). Therefore, 0.4 kW is assumed to be the threshold 
beyond which the operation of the resistance heater is assumed. 

Given hourly data of heat pump and resistance element operation, it is possible to reconstruct 
the water draw for that particular hour, assuming that the water draw coincides with the 

heating operation (this is generally a reasonable approximation, although certain HPWHs may 
choose a more favorable electricity to recharge the tank, either before or after a high-price 
period. In any event, even if there is a temporal shift, the total water draw on a given day is 

accurate. 

The water draw is calculated as follows: 

𝑚 =
3.6 × 106

𝑐𝑝∆𝑇
(𝜂𝐻𝑃𝑒𝐻𝑃 + 𝜂𝑅𝑒𝑅) 

where 𝑚 is the water draw for the hour in kg, 𝑐𝑝 is the heat capacity of water in J/kg, ∆𝑇 is the 

temperature difference between the storage temperature setpoint and the water supply 
temperature in °C, 𝜂𝐻𝑃 and 𝜂𝑅 are the efficiencies of the water heating for the heat pump and 

resistance component respectively, and 𝑒𝐻𝑃 and 𝑒𝑅 are the electric energy supplied for the 
hour to the heat pump and resistance heater components, in kWh. 

To calculate the energy consumption for the conventional electric water heater, we assume 
that the water draw would be the same independently of the type of water heater used. While 
it may be possible that a customer who chooses a heat pump water heater would use more 

DHW as a result of the lower cost to heat it, it is also as likely that the type of customer who 
chooses to install a high efficiency water heater will also be concerned about water use , so we 
assume that the two behaviors cancel each other out. 

Given an hourly water use 𝑚, then the corresponding energy use 𝑒𝑅 for the equivalent electric 
heater is given by: 

𝑒𝑅 =
1

3.6 × 106𝜂𝑅
𝑚 × 𝑐𝑝 × ∆𝑇 

 

Similarly, the quantity of gas 𝑒𝐺 required over the course of an hour to heat the same quantity 

of water is given by: 

𝑒𝐺 =
0.0341296

3.6 × 106𝜂𝐺
𝑚 × 𝑐𝑝 × ∆𝑇 

 

where 𝑒𝐺 is in therms. 
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4. Cost and Emissions Analysis 
 

The energy cost and emissions analysis are conducted using two separate methodologies, each 
providing specific insights into the benefits of switching to heat pump water heating with smart 
energy management. The first methodology uses the statistical model, that considers aggregate 
water heating cost differentials. This methodology yields insight into the combined effect of 

hardware substitution and intelligent energy management. The second methodology assumes 
that water charging is managed in exactly the same way for all hardware types (HPWH, 
conventional electric and conventional gas), so that changes in cost result only from hardware 

substitution. 

Cost was considered from two different perspectives: the cost to SMUD, and the cost to the 
customer. The cost to SMUD is estimated using the hourly CAISO price data provided by SMUD 
for the test period. The electricity cost to the customer is estimated using SMUD’s residential 
Time-of-Day Rate for the year of 2020, available to the customers in the pilot4. The natural gas 

cost to the customer is estimated using PG&E’s residential average monthly gas prices for the 
year of 20205. 

Analysis following statistical model 

The statistical approach compares the actual total electricity use at the meter (obtained directly 
by reading the meter) with a model of the total cost of the meter with the technology that the 
heat pump water heater replaces (conventional electric or gas). The quantity of interest is the 

cost differential between operating the original water heater and the  heat pump water heater.  
A positive differential indicates a cost saving, and vice versa. The average hourly differential 
cost of energy to SMUD to operate each water heater is shown in Figure 9, for the electric 

replacement and for the gas replacement, respectively. 

For the electric water heater replacement, there is a substantial hourly and daily variation in 

cost, but overall energy cost differential is negative in the early morning and increasingly 
positive as the day progresses to the late afternoon. This reflects both the higher efficiency of 
the HPWH compared to the resistance electric heater it replaces, and a charging strategy that 

seeks to take advantage of lower energy prices (reflected, for example, in a higher average cost 
of energy in the early morning). Overall, there is a net annual energy cost differential to SMUD 
of $265 per water heater, obtained by summing the individual hourly energy cost differential 

for the test period and scaling to extrapolate an annual amount. The period of January 1st to 

 
4 https://www.smud.org/-/media/Documents/Rate-Information/2019-Rate-Action/GM-Report-Volume-1.ashx 
rates 2020 
5 https://www.pge.com/tariffs/Residential.pdf 
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March 5th, 2020 did not have data, the results from the spring period in which there was data: 
March 6th to May 31st 2020 was extrapolated to complete the spring portion in the annual 

summation to account for the missing data. The period of December 16th to December 30th did 
not have hourly CAISO pricing data, the results from the winter period in which there was data: 
October 1st to December 17th 2020 was extrapolated to complete the winter portion of SMUD’s 

cost in the annual summation to account for the missing data.  

For the gas replacement, the average cost differential to SMUD is negative throughout the day, 

reflecting the fact that more electricity is used when a heat pump water heater replaces a gas 
water heater. We note that, on individual days, the cost differential can be positive, but this is 
likely a function of exogenous factors not fully accounted for in the statistical model.  Overall, 

there is a net annual energy cost differential to SMUD of -$141 per water heater, obtained by 
summing the individual hourly energy cost differential for the test period and scaling to 
extrapolate an annual amount. The negative differential means that SMUD must pay an 

additional amount to provide the electricity to run the heat pump water heaters that replace 
gas heaters. This is offset by the additional revenue from the customer, considered below.  

From the point of view of the customer, a similar methodology is used. Again, daily average 
cost profiles are plotted to understand daily and hourly variations, shown in Figure 10. For the 
electric replacement, the cost differential results solely from the difference in electricity 

consumption between the HPWH and the conventional electric heater it replaces, multiplied by 
the applicable SMUD electricity rate for the date and hour of day. As with the SMUD cost 
differential, HPWH costs more than the conventional electric heater in the early morning, due 

to charging strategy, and less for the remainder of the day, due to a combination of charging 
strategy and higher efficiency. Overall, the annual cost differential to the average customer is 
$233.  

For the gas replacement, the cost differential is a result of the increase in electricity cost and 
corresponding decrease in gas cost associated with the switch from gas to HPWH. The annual 

cost differential is $76, composed of an additional electricity cost of $141, and a reduction in 
gas bill of $217.The overall cost differentials, broken up seasonally, are presented in Table 6. 
The period of January 1st to March 5th 2020 did not have data, the results from the spring 

period in which there was data: March 6th to May 31st 2020 was extrapolated to complete the 
spring portion in the annual summation to account for the missing data. The period of 
December 16th to December 30th did not have hourly CAISO pricing data, the results from the 
winter period in which there was data: October 1st to December 17th 2020 was extrapolated to 

complete the winter portion of SMUD’s cost in the  annual summation to account for the 
missing data.  

For the analysis using results obtained from the statistical approach, the cost of energy for the 
study period included a data file provided by SMUD with CAISO’s hourly cost of energy.  
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On average the heat pump water heaters that replaced the electric water heaters used less 
energy and had a lower cost of energy per hour for both the customer and SMUD. Since 

replacing a gas water heat with heat pump water heater uses more electricity SMUD observed 
negative cost savings of about -.25 for most hours of the day. However, the customer saves 
money with the gas replacement most of the day besides 1 AM and 10 AM, due to the avoided 

cost of gas with the heat pump water heater, which is more expensive on average than 
electricity from SMUD. Negative cost savings are observed for the electric replacement during 
some hours- meaning at those particular times the cost of energy for the original water heater 
was less than the replacement, this is primarily due to differences in the time and intensity that 

water is heated between the original and replacement water heaters. In the summer, the 
average electric replacement had more cost savings for both the customer and SMUD. While in 
the spring period SMUD had the most cost and in the winter the customer had the most cost 

savings with the gas replacement.  The average daily profile for cost savings over the analysis 
period is shown in Figure 9 for SMUD and Figure 10 for the customerError! Reference source 
not found.. The red lines represent each day’s hourly cost savings while the blue line represents 

the average cost savings for each hour over the analysis period. This was calculated by taking 
the cost savings for each particular hour of the day over the entire analysis period and dividing 
by the total number of days. The customer savings have more variation in each day’s hourly 

cost savings than SMUD’s as seen by the variation in cost savings between the red lines.  This is 
due to the daily time-of-use pricing rate present under the customer’s residential rate.  
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Figure 9: SMUD cost differential by hour for each day (red lines) compared to average over 
whole period (blue line) for the average electric water heater replacement (top) and the average 
gas water heater replacement (bottom) 
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Figure 10: Customer cost differential by hour for each day (red lines) compared to average over 
whole period (blue line) for the average electric water heater replacement (top) and the average 

gas water heater replacement (bottom) 
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The total energy usage cost differential per device for electric replacements for SMUD each 
seasonal period is calculated by taking the hourly kWh that was saved from all electric 
replacements and dividing by the total number of replacements in the given hour, multiplied by 

the kWh cost of energy described in the hourly CAISO pricing data provided by SMUD, summed 
for each hour in the period: ∑ 𝑒 ∗ 𝑝𝑛

𝑖=0 , where 𝑛 is the number of hours within that in seasonal 
period, 𝑒 is the average energy saved per device in the given hour (kWh), and 𝑝 is CAISO’s 
electricity usage price for the given hour (dollars/kWh). Energy cost differential for the average 

electric replacement for customer was calculated by taking the hourly kWh that was saved from 
all electric replacements and dividing by the total number of replacements in the given hour, 
multiplied by the kWh cost of energy described in SMUD’s 2020 residential time-of-use rate, 

summed for each hour in the period: ∑ 𝑒 ∗ 𝑝𝑛
𝑖=0 , where 𝑛 is the number of hours within that in 

seasonal period, 𝑒 is the average energy saved per device in the given hour (kWh), and 𝑝 is 
SMUD’s 2020 residential time-of-use rate for the given hour (dollars/kWh). The differential in 

energy cost for the average gas replacement for SMUD is the hourly kWh accrued from all the 
gas replacements, divided by the total number of replacements in that hour, multiplied by the 
kWh cost of energy described in the hourly CAISO pricing data provided by SMUD, summed for 

each hour in the period: ∑ 𝑒 ∗ 𝑝𝑛
𝑖=0 , where 𝑛 is the number of hours within that in seasonal 

period, 𝑒 is the additional average energy per device in the given hour (kWh), and 𝑝 is CAISO’s 
electricity usage price for the given hour (dollars/kWh). The total savings per device for gas 

replacements for the customer was computed by taking the hourly avoided cost of gas as 
described by the therms the gas water heater would have used if not replaced multiplied by 
PG&E’s average monthly gas per therm price for the given month in 2020. This number is 
summed with additional cost of electricity accrued  from the heat pump water heat as 

described by the additional hourly kWH used for the average gas replacement multiplied by 
SMUD’s residential time-of-use rate for the given hour: ∑  𝑒 ∗𝑛

𝑖=0 𝑠  + ∑  𝑡 ∗ 𝑝𝑛
𝑖=0 , where 𝑒 is the 

additional electricity used from the average heat pump water heater replacing a gas water 

heater for the given hour (negative avoided kWh), 𝑠 is SMUD’s 2020 residential time-of-use rate 
for the given hour (dollars/kWh), 𝑡 are the avoided therms the average gas water heater would 
have used if not replaced, 𝑝 is PG&E’s monthly average cost of gas for the given month 

(dollars/therm), and 𝑛 is the number of hours in the given period. The annual estimation for 
cost savings per device is the sum of three periods. The period of January 1st to March 5th 2020 
did not have data, the results from the spring period in which there was data: March 6th to May 

31st 2020 was extrapolated to complete the spring portion in the annual summation to account 
for the missing data. The period of December 16th to December 30th did not have hourly CAISO 
pricing data, the results from the winter period in which there was data: October 1st to 
December 17th 2020 was extrapolated to complete the winter portion of SMUD’s cost in the 

annual summation to account for the missing data. A summary of the estimated cost savings for 
the average replacement is shown in Table 6. 
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Table 6: Summary table for average cost savings per replacement 

Replacement 
Water 

Heater 

Period 

SMUD 
Average Cost 
Savings per 

Device ($) 

SMUD 

Annual 
Average 
Cost 

Savings per 
Device ($) 

Customer 

Average Cost 
Savings per 
Device ($)  

Customer 

Annual 
Average 
Cost Savings 

per Device 
($) 

Electric January to May 25 (87 days) 

255 

24 (87 days) 

 

233 

 

Electric 
June to 

September 
163 (122 days)  

143 (122 

days) 

Electric 
October to 
December 

43 (78 days) 
48 (93 days) 

Gas January to May -44 (87 days) 

-141 

13(87 days) 

76 
Gas 

June to 

September 
-39(122 days)  

19(122 days) 

Gas 
October to 
December 

-20(78 days) 
25(93 days) 

 

 

 

The replacement heat pump water heaters were primarily 50-gallon Rheem generation 4 heat 

pump water heaters, with a few 65- and 80-gallon units. Additionally, there were a few GE heat 
pump water heater units. Specific details such as the model number and cost of the original and 
replacement units were not given. In order to account for the variation in possible models that 
could have been used for the replacements, all Rheem’s generation 4 heat pump water heater 

models were considered in estimating the upfront cost for the replacements. Upfront cost for 
the replacement heat pump water heaters, the original gas water heaters, and the original 
electric water heaters were estimated by averaging the average market price for the given 

models. The gas and electric water heater models used in this estimation were comparable 
Rheem models of similar quality. The estimated upfront cost for the replacement heat pump 
water heater was $1,425. The gas and electric water heaters that were used to estimate the 

upfront cost for the original water heaters were $733 and $616 respectively. The specific 
models used in the estimation of upfront cost are found in Table 7. SMUD also offers a one-
time incentive of $150 as well as $2 off the monthly energy bill for customers who purchase an 
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internet-connected heat pump water heater. Considering this $150 rebate, 12$ annual 
reduction energy cost, and using the estimations for upfront cost and cost savings- the heat 

pump water heater has an estimated simple payback of about 14 years if it replaced a gas 
water heater and 5 years if it replaced an electric water heater assuming the 12$ monthly credit 
applies each year of payback for both replacement. This was calculated by subtracting the $150 

rebate from the averages upfront cost then dividing the estimated upfront cost by the 
estimated annual cost savings for each replacement type plus the $12 annual bill credit.  

Table 7: Rheem Water Heaters Average Market Cost 

50 Gallon Rheem Models Average Cost for Model 

Professional Prestige ProTerra Heat Pump 
Water Heater 

$1,600 

Performance Platinum ProTerra Heat Pump 

Water Heater 

$1,400 

Performance Platinum Series Heat Pump 
Water Heater 

$1,300 

Professional Prestige Series Heat Pump 
Water Heater 

$1,400 

Performance Platinum Gas Water Heater $800 

Performance Plus Gas Water Heater $700 

Performance Gas Water Heater $650 

Marathon Electric Water Heater $850 

Performance Plus Electric Water Heater $550 

Performance Electric Water Heater $450 

 
To calculate an average emissions intensity for SMUD, ADM used data from a recent California 
Energy Commission (CEC) staff report titled: “Review of Sacramento Municipal Utility District’s 

2018 Integrated Resource Plan”, which contained SMUD’s overall generation mix .6 SMUD’s 
generation mix is relatively clean, meaning their mix of resources used for generation contains 
a large proportion of renewable or low-carbon resources. The resources that contribute to CO₂ 

emissions in SMUD’s generation mix are natural gas, spot purchases, large hydroelectric, and 
geothermal. It should be noted that the CO₂ emitted from geothermal plants are not from 
power production but rather a natural, minor biproduct of all geothermal reservoirs. This CO2 

would eventually vent into the atmosphere without power plant development, but dry steam 
and flash steam power plant production significantly accelerates this process to the point  that it 
is not negligible. Similarly, hydropower dams will release greenhouse gases due to the 
decomposition of flooded organic material, rather than from actual power production. Details 

 
6  California Energy Commission. “Review of Sacramento Municipal Utility District’s 2018 Integrated Resource 
Plan.” Energy.ca.Gov, 2018, www.energy.ca.gov/filebrowser/download/1903. 
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on SMUD’s generation mix can be found in Table 8:. The emission intensity for natural gas was 
calculated by taking the mean emission intensity from all the natural gas plants that serve 

SMUD. Details of SMUD’s natural gas plants’ emission intensities can be found in Table 9:, 
which is taken from the aforementioned CEC staff report. After taking the mean and converting 
from metric ton of CO₂ per Megawatt-hour (MWh) to kg of CO₂ per kWh, the emission intensity 

for natural gas electricity production was 0.5078 kg of CO₂ per kWh. It is assumed that SMUD 
purchases spot imports from CAISO (California’s largest wholesale energy market). The spot 
purchase emission rate is therefore CAISO’s average emission rate which comes out to .2907 kg 
of CO₂ per kWh. The emission rate for hydroelectric used in this analysis was 0.0185 kg of CO₂ 

per kWh, using data from a detailed report done by the International Hydropower Association 
(IHA), which covered 500 empirical emission measurements from more than 200 reservoirs 
worldwide7. The project team was unable to determine whether SMUD’s geothermal 

generation is from dry steam and flash steam power plants or from closed loop binary-cycle 
plants. The later captures emissions and stores it underground producing little to no emissions. 
To reflect the possibility of multiple types of geothermal plants in SMUD’s mix an average was 

taken from the emission rate of dry steam and flash steam power plants (60 lbs CO₂/MWh) and 
binary plants (0 lbs CO2/MWh). This gives an average of 30 lbs of CO₂ per MWh (0.0136 kg CO₂/ 
kWh). The emission intensity data for geothermal power plants was collected from the U.S. 

Department of Energy8. Each resource’s emission rate was then multiplied by the given 
resources’ percentage of SMUD’s total generation mix to get its contribution to SMUD’s 
average emission intensity. This process is seen in Table 10:. 

 

Table 8: SMUD Generation Mix Data from CEC Staff Report 

Resource 2019 2025 2030 

Total Net Energy for 
Load 11,404  11,637  12,286  

Non-RPS Resources       

Solar PV 362  608  798  

Large Hydroelectric 2,282  2,271  2,274  

Natural Gas  3,940  4,032  3,058  

Nuclear 0  0  0  

Storage 0  0  347  

Spot Purchases 3,133  2,534  2,306  

Spot Sales (1,509) (1,852) (1,851) 

 
7 International Hydropower Association. “Hydropower Status Report.” Hyrdopower.Org, 2018, hydropower-
assets.s3.eu-west-2.amazonaws.com/publications-docs/iha_2018_hydropower_status_report_4.pdf. 
8 U.S. Department of Energy. “Geothermal Power Plants — Meeting Clean Air Standards.” Energy.Gov, 2003, 
www.energy.gov/eere/geothermal/geothermal-power-plants-meeting-clean-air-
standards#:%7E:text=4.1%20million%20tons%20of%20carbon,80%2C000%20tons%20of%20nitrogen%20oxides.  
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RPS Resources       

Biofuels 1,146  1,225  1,205  

Geothermal 274  362  351  

    

Resource 2019 2025 2030 

Small Hydroelectric 88  88  90  

Solar PV 53  546  816  

Wind 1,636  1,822  2,899  

Total Energy Procured 11,405  11,636  12,293  

Undelivered RPS 
Energy 0.63  0.81  9.10  

Surplus/(Shortfall) 0  0  0  

 

Table 9: SMUD Natural Gas Plant Emission Data from CEC Staff Report  

Source Fuel Type 
GHG Intensity 

(MT CO2e 
/MWh) 

2019 Total 
Emissions 

(MMT CO2e) 

2025 Total 
Emissions 

(MMT CO2e) 

2030 Total 
Emissions 

(MMT CO2e) 

Campbells CC natural gas 0.46 0.128 0.262 0.039 

Carson CC natural gas 0.601 0.001 0 0 

Cosumnes CC NG natural gas 0.378 1.284 1.105 0.927 

Proctor Gamble natural gas 0.474 0.201 0.247 0.181 

McClellan natural gas 0.706 0.002 0.001 0 

Net Spot Market system 0.428 0.695 0.292 0.195 

Total Portfolio 
emissions NA NA 2.311 1.906 1.342 
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Table 10: SMUD Generation Mix Emission Rates 

Resource Generation 
Mix 

Contribution 
(MW) 

Percentage 
of Total 

Contribution 

Emission 
Rate kg of 

CO₂ per 
kWh 

SMUD Average 
Emission 

Contribution 
CO₂ per kWh 

Biomass & Biowaste 1,146 10% 0 0 

Geothermal  274 2% 0.01360 0.00033 

Renewable Hydro 88 1% 0 0 

Solar 415 4% 0 0 

Wind 1,636 14% 0 0 

Coal 0 0% 0 0 

Large Hydro 2,282 20% 0.01850 0.00370 

Natural Gas 3,940 35% 0.50780 0.17543 

Nuclear 0 0% 0 0 

Spot sales 1,624 14% 0.29070 0.04139 

Total 11,405 100% N/A 0.22085 

 

The kilograms of CO₂ avoided per hour for the electric replacement is calculated by taking the 
hourly kWh that was saved from switching to the heat pump water heater and dividing by the 
total number of replacements in the given hour, then multiplying by SMUD’s average emission 

intensity given by the “total” row in Table 9. For the gas replacement, an emission intensity of 
6.1 Kg of CO₂ per therm was obtained from PG&E9. This emission intensity was multiplied by 
the estimated avoided hourly therms usage that a gas water heater would have used if not 

replaced by the heat pump water heater- this represents the avoided CO₂ emissions from not 
having a gas water heater. Next the additional hourly CO₂ emissions associated with the 
customer’s increase in electricity usage due to switching from gas to heat pump water heater 

was summed with the avoided CO₂ from gas to give the net avoided CO₂ from replacing the gas 
water heater. Note the additional CO₂ from the gas replacement heat pump water heater was 
calculated using the same method as the electric replacement and also used SMUD’s average 
emission intensity. The average electric replacement avoided more CO₂ in the summer period, 

while the average gas replacement avoided more CO₂ in the other two periods. Some negative 
avoided CO₂ values are observed for the heat pump water heaters- meaning that at those time 
the original water heater emitted less CO₂ than the replacement, this is primarily due to 

differences in the time and intensity that water is heated between the original and replacement 
water heaters. On average however, the average heat pump water heater used less energy and 
emitted less CO₂ than the water heaters they replaced. The daily profile for avoided CO₂ 

emissions for both gas and electric replacements using SMUD’s average emission intensity  and 

 
9 https://www.pge.com/includes/docs/pdfs/about/environment/calculator/assumptions.pdf 



                                                                                                    

31 

 

PG is shown in Figure 11. The red lines show each day’s hourly CO₂ emissions profile, while the 
blue line shows the average daily profile from the entire period. This was calculated by taking 

the CO₂ emissions for each hour of the day over the entire analysis period and dividing by the 
total number of days. It can be seen that the electric replacement emits more CO₂ on average 
during the morning hours of the day before consistently avoiding an estimated 0.75 kg of CO₂ 

after 8 AM. The gas replacement avoids less CO₂ at 1 AM and at noon and avoids more CO₂ the 
remainder of the day.  
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Figure 11: Avoided kilograms of CO2 by hour for each day (red lines) compared to average over 

whole period (blue line) for the average electric water heater replacement (top) and the average 
gas water heater replacement (bottom) 
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The total estimated CO2 avoided for the average electric replacement for each period is 

calculated from the following summation: ∑  𝑒 ∗ 𝑠𝑛
𝑖=0  , where 𝑒 is the saved electricity from the 

average heat pump water heater replacing the electric heater for the given hour (avoided 
kWh), 𝑠 is SMUD’s static average emission intensity (kg of CO₂ per kWh), and 𝑛 is the number of 

hours in the given period. The total estimated CO2 avoided for the average gas replacement for 
each period is calculated from the following summation: ∑  𝑒 ∗ 𝑠𝑛

𝑖=0   + ∑  𝑡 ∗ 𝑝𝑛
𝑖=0 , where 𝑒 is the 

additional electricity used from the average heat pump water heater replacing a gas water 

heater for the given hour (negative avoided kWh), 𝑠 is SMUD’s static average emission intensity 
(kg of CO₂ per kWh), 𝑡 are the avoided therms the average gas water heater would have used if 
not replaced, 𝑝 is PG&E’s emission intensity (Kg of CO₂ per therm), and 𝑛 is the number of 

hours in the given period. The annual estimation for avoided CO₂ is the sum of three periods. 
The period of January 1st to March 5th 2020 did not have data, the results from the spring 
period in which there was data: March 6th to May 31st 2020 was extrapolated to complete the 
spring portion in the annual summation to account for the missing data.  A summary of the 

estimated avoided CO₂ emissions for the average replacement is shown in Table 11. 

Table 11: Summary table for average avoided kilograms of CO₂ per replacement 

Replacement 
Water 

Heater 

Period 

Average Avoided 
CO2 Emissions 

per device (kg of 
CO2) 

Average Avoided 
Annual CO2 

Emissions per 
device (kg of CO2) 

Electric January to May   44 (87 days) 

308 
Electric June to 

September 
160 (122 days) 

Electric October to 
December 

71 (93 days) 

Gas January to May   106 (87 days) 

537 

Gas June to 

September 
121 (122 days) 

Gas October to 
December 

139 (93 days) 

 

Cost and Emissions Analysis Following Individual Unit 
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To calculate the CO2 emissions from the use of electricity, the emissions intensity for the SMUD 
system was used, as described by: 

 

𝑔𝑒 = 0.22085 × 𝑒𝑆 

 

where 𝑔𝑒 is the CO2 emitted for the hour by using the quantity of electricity 𝑒𝑆 associated with 
an electric-driven heater, either heat pump or resistance. Similarly, for the gas heater, the 
hourly CO2 emission associated with gas consumption 𝑒𝐺 is: 

 

𝑔𝑔 = 6.091 × 𝑒𝐺 

 

where 𝑒𝐺 is in therms. 

The cost of energy is calculated using: 

 

𝑐𝑒 = 𝑝𝑒 × 𝑒𝑆 

 

for electric heating, where 𝑝𝑒  is the unit cost of electricity in $/kWh, and by: 

 

𝑐𝑔 = 𝑝𝑔 × 𝑒𝑔 

 

where 𝑝𝑔  is the unit cost of gas in $/therm. 

To estimate the impact of switching DHW service from either gas or conventional electric to 

heat pump, the following procedure was used: 

• For each HPWH unit enrolled in the pilot, and for each hour where data are available, 

we calculate: 
o Water draw 
o Energy use for equivalent resistance heater 

o Energy use for equivalent gas heater 
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o CO2 emissions for HPWH, conventional electric heater and gas heater 
o Cost for HPWH, conventional electric heater and gas heater 

• For each unit, we estimate the annual water draw, energy use, annual emissions, and 
annual cost, for the original HPWH and for the equivalent conventional electric and gas 
heaters. The annual quantities are normalized by the time that each individual water 
heater is enrolled in the pilot, which varies considerably between different premises. 

 

The total energy consumption, as a function of annual water draw, is shown in Figure 12. 

 

First, it should be noted that the normalized water draw per household varies considerably, 
from almost zero (perhaps in the case of second homes) to more than 100,000 liters per year 
(potentially households with large families). It is clear that the electricity consumption of the 

conventional electric heater is substantially higher than that of a HPWH. While the electricity 
consumption for the conventional water heater is directly proportional to water draw, the 
electricity consumption of the HPWH also depends on how water is drawn. When water is 

drawn in short, large bursts, the resistance element is activated, so that the energy 
consumption is higher than when the same amount of water is drawn more slowly over a more 
protracted time. It is more difficult to compare the energy consumption of the heat pump 

water heater with the energy consumption of the gas water heater because the primary source 

 

Figure 12: annual energy use as a function of annual water draw. Note that each data 
point corresponds to an individual heater. 
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of energy is different. However, to a first approximation the energy consumed by a gas water 
heater is also linear in water draw, independently of the way that water is drawn.  

The comparison in emissions for the three types of water heater is shown in Figure 13. 

 

The plot shows that the HPWH is by far the lowest emitter. Again, HPWH-associated emissions 
per unit water draw are a function of how water is drawn, increasing when the resistance 
element is activated frequently. Gas water heaters are the greatest GHG emitters, also as a 

function of their relatively low efficiency. The electric heater, while resulting in fewer CO2 
emissions than gas water heaters, in part due to the relatively low-carbon energy mix provided 
by SMUD, still result in greater emissions than HPWH.  

Finally, we consider the impact on operational cost of the HPWH in comparison to conventional 
electric and gas counterparts, for SMUD and for the customer respectively. The cost to SMUD, 

evaluated using the CAISO wholesale prices, is shown in Figure 14.  

 

 

 

Figure 13: annual CO2 emissions as a function of annual water draw for each type of 
water heater. Each point corresponds to a unit ID. 
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Figure 14: annual cost of energy as a function of annual water draw for conventional 
electric and HPWH to SMUD (top panel), and annual cost of energy as a function of 

annual water draw for conventional electric, HPWH and conventional gas water heater 
to the customer (bottom panel). Note that each point corresponds to a unit ID.  
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We note that the energy cost is generally lowest for the HPWH, as expected. However, this cost 
is not substantially lower that the energy cost to run a gas heater, because gas is much cheaper 

than electricity as a raw source of energy. However, while the cost of energy for gas is linear as 
a function of water draw, using electricity to heat water offers opportunities for saving resulting 
from leveraging the variability of the cost of electricity, in combination with the capacity of 

water heaters to store energy. The HPWHs used in this study offer built-in strategies to take 
advantage of lower prices, and this is shown clearly by the fact that cost of energy for larger 
water users is sub-linear, meaning that the strategy was successful in taking advantage of lower 
electricity prices. While a similar effect is shown for the conventional electric water heater, this 

is merely an artifact since water draws for the equivalent resistance heaters are the same as for 
the HPWHs. In reality, water draws for conventional electric heaters would not be managed by 
rate-conscious strategies, as these are only implemented in modern high-end HPWHs, and 

would therefore costs would be higher. This is reflected in the finding that overall savings found 
using the neural network approach, which inherently include both technology and optimization.  

The overall results, averaged over the entire fleet, are shown in Table 12. One salient result is 
that, on average, the annual operational (energy) cost of a HPWH is only about $30 lower than 
the operational cost of a conventional natural gas heater, the primary target for electrification 

via HPWHs. This cost reduction serves to offset the additional upfront costs for purchase and 
installation of a HPWH (average of $692 more expensive than a comparable gas heater, 
somewhat mitigated by the rebate of $150). However, it is likely that the decision to participate 

in a pilot HPWH pilot will be driven more by environmental considerations, primary among 
which is the fourfold reduction in CO2 emissions, compared to a gas heater, rather than 
economic considerations. We also note that GHG emissions from HPWHs are solely a product of 

their energy use, as refrigerant leaks are made extremely rare by the fact that the entire HP 
system is hermetically sealed at the factory, and that a leak could only result from physical 
damage to the appliance, such as a puncture. 

Table 12: Average annual performance metrics for HPWHs, conventional electric heaters, and 
gas heaters. Note that the savings advantage due to operation optimization for the electric and 

HPWH is not reflected in this calculation, because both types of heaters are assumed to use the 
same charging strategy. 

 

 

We also note that the cost savings for the electric heater replacement obtained using the 

individual unit analysis are $140, compared to the $232 obtained using the statistical analysis. 
The difference may be attributed to the fact that the statistical analysis compares optimized 

HPWH 

(kWh)

Elec 

(kWh)

Gas 

(therms)
HPWH Elec Gas HPWH Elec HPWH Elec Gas

avg 7,026 31,255 855 1,882 104 189 416 633 116 256 116 256 147

max 17,523 110,926 4,169 6,678 369 921 1,475 2,247 668 1,070 604 972 522

Cost to CustomerCost to SMUD
Usage 

(hours)

Water 

Draw 

(liters)

Energy Use CO2 Emissions (kg)
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HPWH with un-optimized conventional electric heater, while the individual unit analysis 
compares optimized HPWH with optimized equivalent electric resistance heater. The difference 

between the two ($92 annually) can be attributed to the optimization, a ratio of 0.4 
approximately. In other words, optimization contributes approximately 40% of the energy cost 
savings observed with the heat pump water heater.  
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5. Conclusion  
 Heat pump water heaters are a well-established efficiency upgrade to resistance water heaters 
and an electrification option for gas water heaters. Partnering with PowerMinder software 
algorithms offers benefits to the participants and to SMUD and demonstrates deployment of 

connected devices capable of load shifting.    

Based on the analysis of the impact of HPWH events, both software operating modes (event 

and non-event days) reduce cost for the customer. The results showed that loads generally 
shifted by a few minutes to 20 minutes earlier when compared to non-event days. Customers 
saved an average of $164 per year after rebates if replacing an electric resistance heater, and 

$55 per year after rebates if replacing a gas heater. Gas replacements displaced usage of 104 
therms per year to electrification, resulting in 444 kg of CO2 annual emissions reduction. 
Customers replacing electric systems consume 1,027 kWh less per year, reducing emissions by 

227 kg CO2.  

The PowerMinder Pilot evaluation benefited from a near-real-time data stream for monitoring 

pilot activity. The data stream, provided through a pilot API, allowed ADM to access up-to-date 
information from pilot water heaters, including consumption rates and energy use. Real-time 
data adds value to an evaluation by allowing pilot activity to be continually monitored, rather 

than evaluated once at the end of the pilot year. The advantages are twofold: first, real-time 
monitoring allows problems to be captured and addressed more quickly, increasing pilot 
efficacy; second, real-time evaluation, if paired with a pilot dashboard to communicate results, 

can increase participant buy-in and satisfaction by allowing pilot participants to see a near-live 
feed of the impacts of their participation in the pilot. For small, pilot pilots this can be especially 
valuable, as participants are more likely to have participated for environmental reasons and be 

engaged with the pilot. 

Some aspects of the data and approach could be improved in a future study. The sample size of 

94 is rather small for residential analyses, especially when whole-house metering data is used in 
the analysis. With small samples, irregular water and energy consumption can have a greater 
influence the analysis. Most of the pilot data for this study was collected during the COVID-19 

pandemic, during which more people were at home and consumption may not represent 
typical conditions. Regarding the evaluation of the software, we recommend the software be 
set to a baseline mode (no optimization) for several days per week along with the other two 

modes (event and non-event days) to enable more accurate impact analysis.  

 


