November 2021

Final

AECOM Environment

Prepared for: Sacramento Municipal Utility District Sacramento, CA Prepared by: AECOM Sacramento, CA 60632793 November 2021

Site Characterization Report Addendum No. 2 SMUD 59th Street Corporation Yard

Final

Prepared for:

Sacramento Municipal Utility District Environmental Services 6201 S Street, Mail Stop B209 Sacramento, California 95817

Prepared by:

AECOM Technical Services, Inc. 2020 L Street, Suite 400 Sacramento, California 95811

November 2021

AECOM

PREFACE

This site characterization report addendum was prepared by AECOM Technical Services, Inc. (AECOM) for the Sacramento Municipal Utility District (SMUD) under Master Contract 4600001299, Task Contract 4500121576, Task Number 576-003. The work was initiated by SMUD in accordance with the requirements of the Corrective Action Consent Agreement, Docket Number HWCA P1-13/14-007 between SMUD and the California Department of Toxic Substances Control (DTSC). The work partially relies on information provided by SMUD and information in reports available on the DTSC EnviroStor website. Assumptions based on this data, although believed reasonable and appropriate based on the data provided herein, may not prove to be true in the future as new data are collected.

Approved:

Edmund Tarter, AECOM Senior Civil Engineer California Professional Engineer, No. 64825

No. 64825

No. 64825

CIVIL

CIVIL

CIVIL

COF CALIFORNIA

11/11/2021

Table of Contents

Exe	Executive SummaryES-1				
1.0	Introduction				
	1.1	Site De	escription	1-1	
	1.2	Purpos	se and Objectives	1-2	
		1.2.1	Soil Gas		
		1.2.2	Sub-Slab Vapor		
		1.2.3	Sewer Gas		
2.0	Back	ground		2-1	
3.0	Site Ir	3-1			
	3.1	3.1 Scope and Approach		3-1	
		3.1.1	Soil Gas Investigation	3-1	
		3.1.2	Sub-Slab Vapor Investigation	3-1	
		3.1.3	Sewer Gas Sampling	3-1	
	3.2	Field N	Methods	3-1	
		3.2.1	Site Reconnaissance and Proposed Sample Location Marking	3-2	
		3.2.2	Subsurface Utility Clearance	3-2	
		3.2.3	Permitting	3-2	
		3.2.4	Borehole Advancement and Soil Logging	3-2	
		3.2.5	Vapor Monitoring Well Installation and Soil Gas Sampling	3-2	
		3.2.6	Vapor Pin® Installation and Sub-Slab Vapor Sampling	3-3	
		3.2.7	Sewer Gas Sampling	3-4	
		3.2.8	Land Surveying	3-4	
		3.2.9	Investigative-Derived Waste Management and Disposal	3-4	
	3.3	Analytical Methods		3-4	
	3.4	Quality Assurance/Quality Control		3-4	
	3.5	3.5 Sampling and Analysis Plan Deviations		3-6	
4.0	Invest	tigation	n Results	4-1	
	4.1	Geology and Hydrogeology		4-1	
	4.2	Analytical Results		4-1	
		4.2.1	Data Validation and Data Usability	4-1	
		4.2.2	Soil Gas	4-1	
		4.2.3	Sub-Slab Vapor	4-2	
		4.2.4	Sewer Gas	4-3	

5.0	Evalu	5-1	
	5.1	Site-Specific Lines of Evidence	5-2
		5.1.1 Proximity to Subsurface VOC Source(s)	5-2
		5.1.2 Soil Gas Concentrations	5-3
		5.1.3 Temporal Variability	5-5
	5.2	Redevelopment/Future Building Design	5-7
6.0	Conc	lusions and Recommendations	6-1
	6.1	Chemicals of Concern	6-1
		6.1.1 Soil Gas	6-1
		6.1.2 Sub-Slab Vapor	
		6.1.3 Sewer gas	6-1
	6.2	Extent of Soil Gas Contamination	6-1
	6.3	Attenuation Factor	6-2
	6.4	Recommendations	6-3
7 0	Pofor	rancas	7-1

AECOM iv

List of Tables

Table 3-1	Current Investigation Soil Gas Sample Summary
Table 3-2	Current Investigation Sub-Slab Vapor Sample Summary
Table 3-3	Current Investigation Sewer Gas Sample Summary
Table 4-1	Current Investigation Maximum Analyte Concentrations Detected in Soil Gas Compared to Soil Vapor Screening Levels (0.03 Attenuation Factor)
Table 4-2	Current Investigation Maximum Analyte Concentrations Detected in Soil Gas Compared to Soil Vapor Screening Levels (0.001 Attenuation Factor)
Table 4-3	Current Investigation Analytes Detected in Shallow Soil Gas Compared to Soil Vapor Screening Levels (0.03 Attenuation Factor)
Table 4-4	Current Investigation Analytes Detected in Shallow Soil Gas Compared to Soil Vapor Screening Levels (0.001 Attenuation Factor)
Table 4-5	Current Investigation Analytes Detected in Sub-Slab Vapor Compared to Soil Vapor Screening Levels (0.03 Attenuation Factor)
Table 4-6	Current Investigation Analytes Detected in Sub-Slab Vapor Compared to Soil Vapor Screening Levels (0.001 Attenuation Factor)
Table 4-7	Current Investigation Analytes Detected in Sewer Gas Compared to Screening Levels (0.03 Attenuation Factor)
Table 4-8	Current Investigation Analytes Detected in Sewer Gas Compared to Screening Levels (0.001 Attenuation Factor)
Table 5-1	Fall/Winter 2020/2021 and Summer 2021 Maximum Analyte Concentrations Detected in Soil Gas
Table 5-2	Fall/Winter 2020/2021 and Summer 2021 Maximum COC Concentrations Detected in Shallow Soil Gas Compared to Soil Vapor Screening Levels (0.03 Attenuation Factor)
Table 5-3	Fall/Winter 2020/2021 and Summer 2021 Maximum COC Concentrations Detected in Shallow Soil Gas Compared to Soil Vapor Screening Levels (0.001 Attenuation Factor)

AECOM

List of Figures

Figure 1-1	Site Location Map
Figure 1-2	Site Features Map
Figure 3-1	Current Investigation Sample Locations
Figure 4-1	Current Investigation Benzene and Ethylbenzene Concentrations in Soil Gas (0.03 Attenuation Factor)
Figure 4-2	Current Investigation Benzene and Ethylbenzene Concentrations in Soil Gas (0.001 Attenuation Factor)
Figure 4-3	Current Investigation BDCM and Chloroform Concentrations in Soil Gas (0.03 Attenuation Factor)
Figure 4-4	Current Investigation BDCM and Chloroform Concentrations in Soil Gas (0.001 Attenuation Factor)
Figure 4-5	Current Investigation PCE, TCE, and cDCE Concentrations in Soil Gas (0.03 Attenuation Factor)
Figure 4-6	Current Investigation PCE, TCE, and cDCE Concentrations in Soil Gas (0.001 Attenuation Factor)
Figure 4-7	Current Investigation VOC Concentrations Detected in Sub-Slab Vapor and Sewer Gas
Figure 5-1	Benzene, Ethylbenzene, and Naphthalene Lateral Extents in Shallow Soil Gas, Fall/Winter 2020/2021 and Summer 2021
Figure 5-2	1,2-DBE, BDCM, and Chloroform Lateral Extents in Shallow Soil Gas, Fall/Winter 2020/2021 and Summer 2021
Figure 5-3	PCE, TCE, and cDCE Lateral Extents in Shallow Soil Gas, Fall/Winter 2020/2021 and Summer 2021

AECOM vi

List of Appendices

Appendix A SMUD and DTSC Correspondence

Appendix B Vapor Well Borehole Logs

Appendix C Data Validation Summary and Validated Data Sets

Appendix D Laboratory Analytical Data Reports

AECOM vii

List of Acronyms and Abbreviations

° degree

μg/m³ micrograms per cubic meter

minute (in the context of latitude and longitude)

number

® registered trademark

' second (in the context of latitude and longitude)

™ trademark

AECOM Technical Services, Inc.

AF attenuation factor

APN Assessor's Parcel Number

ASTM ASTM International
B&B B&B Locating, Inc.
BDCM bromodichloromethane
Beacon Beacon Environmental
bgs below ground surface
CIA concentration in indoor air
CSG concentration in soil gas

CACA Corrective Action Consent Agreement

CalEPA California Environmental Protection Agency

cDCE *cis*-1,2-dichloroethene COC chemical of concern

Confluence Environmental, Inc.

DBE dibromoethane
DFA difluoroethane
DCP dichloropropane
DPT direct push technology
DQO data quality objective

DTSC California Department of Toxic Substances Control

e.g. exempli gratia, for example

et al. et alia, and others
Eurofins Eurofins Air Toxics, LLC

HERO Human and Ecological Risk Office
HHRA Human Health Risk Assessment

i.e. *id est*, that is

IASL indoor air screening level IDW investigation-derived waste

LOE line of evidence

MDL method detection limit MEK methyl ethyl ketone

MIBK methyl isobutyl ketone (4-methyl-2-pentanone)

MTBE methyl tert-butyl ether

No. number

PCE tetrachloroethene
QA quality assurance
QC quality control
RL reporting limit

AECOM

List of Acronyms and Abbreviations (continued)

SAP Sampling and Analysis Plan

SCEMD Sacramento County Environmental Management Department

SCR Site Characterization Report Site 59th Street Corporation Yard

SL screening level

SMUD Sacramento Municipal Utility District

SVSL soil vapor screening level

SWRCB California State Water Resources Control Board

TCE trichloroethene
TO Toxic Organics

TPH_g total petroleum hydrocarbons as gasoline

U.S. United States

USA North 811 Underground Service Alert of Northern California and Nevada

USEPA United States Environmental Protection Agency

VI vapor intrusion

VOC volatile organic compound

Executive Summary

The Sacramento Municipal Utility District (SMUD) conducted a supplemental site investigation at the SMUD 59th Street Corporation Yard (Site) in accordance with the *Scope of Work for Phase II* within the *First Amendment to Corrective Action Consent Agreement*, Docket HWCA P1-13/14-007 (California Department of Toxic Substances Control [DTSC], 2018). SMUD conducted soil gas, sub-slab vapor, and sewer gas sampling in support of selecting and implementing a corrective action for the Site. This Site Characterization Report (SCR) Addendum Number (No.) 2 was prepared by AECOM Technical Services, Inc. (AECOM) on behalf of SMUD to document the work performed and the results from the investigation activities conducted at the Site from July through August 2021. This SCR Addendum No. 2 is a companion document to the SCR (AECOM, 2019) and SCR Addendum (AECOM, 2021), which documented the work performed and the results from investigation activities conducted at the Site from December 2018 through March 2021.

The Site encompasses 19.74 acres in an area of varied land use. Residential neighborhoods are situated to the west, commercial developments are situated to the north, and United States Highway 50 is located south of the Site. A California Department of Transportation laboratory is located east of the Site. The SMUD headquarters and other buildings of the SMUD campus are located southeast of the Site. The yard is bisected by a Sacramento Regional Transit light rail line and a petroleum product pipeline beneath the light rail right-of-way.

Investigation Purpose

The purpose of the current Site investigation was to complete the following:

- Evaluate seasonal and temporal variations in soil gas concentrations.
- Further characterize the lateral and vertical extent of volatile organic compounds (VOCs) in soil gas.
- Utilize sub-slab vapor data to further develop lines of evidence (LOEs) regarding soil vapor attenuation at the Site.
- Utilize sewer gas data to assess sewer lines as a potential preferential pathway for vapor intrusion (VI).

Investigation Objectives and Results

Soil Gas. The SCR Addendum recommended conducting additional soil gas sampling at existing vapor monitoring wells in the summer for comparison to the fall/winter 2020/2021 sampling results to evaluate seasonal and temporal variations and support future risk management decisions (see first bullet item under Investigation Purpose). Therefore, one of the current investigation objectives was to conduct soil gas sampling in summer 2021 to obtain summer soil gas data to compare to the fall/winter 2020/2021 soil gas data reported in the SCR Addendum.

VI guidance recommends using a default AF of 0.001 for existing commercial buildings with samples collected at the contamination source, along with the maximum soil gas concentration (DTSC, 2011). California draft supplemental VI guidance (California Environmental Protection Agency, 2020) recommends using the United States Environmental Protection Agency (USEPA) empirically-derived attenuation factor (AF) of 0.03 (USEPA, 2015) for preliminary screening of VOCs detected in soil gas. Due to uncertainties in whether the 0.03 AF will ultimately be adopted for use in California, the following evaluation of the current investigation soil gas results used both the 0.03 AF and the 0.001 AF.

During the fall/winter 2020/2021 soil gas sampling event, the highest tetrachloroethene (PCE), trichloroethene (TCE), and *cis*-1,2-dichloroethene (cDCE) concentrations were detected in soil gas samples collected from vapor monitoring well SVM-1 immediately north of the Tool Issue Building, and the highest chloroform concentrations were detected in soil gas samples collected from vapor monitoring well VW30 in the parking lot between the Garage and

Warehouse buildings. After vapor monitoring well SVM-1, the next highest PCE concentrations were detected in soil gas samples collected from vapor monitoring well VW24 near the southwest corner of the Garage Building. Based on the elevated VOC concentrations detected in soil gas from these vapor monitoring wells, the chemical release source locations were likely in the vicinity of these vapor monitoring wells. Existing vapor monitoring wells at the Site are spaced approximately 100 feet apart from each other. When elevated VOC concentrations are detected in soil gas collected from one vapor monitoring well, it is possible higher VOC concentrations indicative of a chemical release source could be present between that well and the next closest vapor monitoring well (see second bullet item under Investigation Purpose). Therefore, one of the current investigation objectives was to conduct further characterization to refine where the highest PCE, TCE, cDCE, and chloroform concentrations in soil gas are to support remedial design.

The SCR Addendum also recommended conducting additional soil gas characterization to better define the vertical extent of contamination, if necessary, to support remedial design. Based on the fall/winter 2021/2021 soil gas results, additional soil gas characterization was needed to better define the vertical extent of chloroform in the vicinity of vapor monitoring well VW30 where chloroform was detected in soil gas at concentrations of 650 and 1,300 micrograms per cubic meter (µg/m³) at depths of 5.5 and 14.5 feet below ground surface (bgs), respectively (see second bullet item under Investigation Purpose). Therefore, one of the current investigation objectives was to install a deeper vapor monitoring well in the vicinity of vapor monitoring well VW30 and collect and analyze a soil gas sample from this well.

Ten analytes (benzene, bromodichloromethane [BDCM], chloroform, cDCE, 1,2-dichloropropane [DCP], 1,4-dioxane, ethylbenzene, naphthalene, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential soil vapor screening levels (SVSLs) derived using the 0.03 AF. The highest benzene, 1,4-dioxane, ethylbenzene, and naphthalene concentrations were detected in soil gas samples collected at a depth of 14.5 feet. The highest BDCM, chloroform, cDCE, 1,2-DCP, PCE, and TCE concentrations were detected in shallower soil gas samples collected from a depth of 5.5 feet or less. In comparison, only five of these analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.001 AF.

The analytes detected in shallow soil gas (i.e., 5.5 feet or less) are of particular interest when evaluating the potential for VI to indoor air. Eight analytes (benzene, BDCM, chloroform, cDCE, 1,2-DCP, ethylbenzene, PCE, and TCE) were detected in shallow soil gas at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.03 AF. In comparison, only five of these analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.001 AF.

Based on evaluation of the summer 2021 sampling results from the current investigation against the fall/winter 2020/2021 sampling results from the previous investigation, chloroform, cDCE, PCE, and TCE continue to be identified as chemicals of concern (COCs) in soil gas based on a 0.001 AF. When a more conservative 0.03 AF was applied, benzene, BDCM, and ethylbenzene also continue to be identified as COCs in soil gas. 1,2-Dibromoethane (DBE) and naphthalene, which were previously identified as COCs in soil gas, were not detected in shallow soil gas during the summer 2021 sampling event. Additionally, the maximum toluene concentration detected in shallow soil gas during the summer 2021 sampling event was two orders of magnitude lower than was detected during the fall/winter 2020/2021 sampling event (92 μ g/m³ in summer 2021 versus 9,700 μ g/m³ in fall/winter 2020/2021). Therefore, 1,2-DBE, naphthalene, and toluene were not confirmed to be COCs in soil gas based on the summer 2021 sampling results.

The extent of soil gas contamination was greater based on fall/winter 2020/2021 sampling results when compared to the summer 2021 sampling results. The lateral extent of VOC concentrations in shallow soil gas exceeding the

SVSLs derived using a 0.03 AF extends beneath approximately 9.2 acres based on fall/winter 2020/2021 data compared to 8.4 acres based on the summer 2021 data. The lateral extent of fall/winter 2020/2021 VOC concentrations in shallow soil gas exceeding the SVSLs derived using a 0.001 AF is limited to two localized areas comprising approximately 0.65 acre. In comparison, the lateral extent of summer 2021 VOC concentrations in shallow soil gas exceeding the SVSLs derived using a 0.001 AF is limited to three localized areas comprising approximately 0.36 acre.

Sub-Slab Vapor. The SCR Addendum recommended sub-slab vapor sampling beneath existing buildings overlying areas where soil gas COCs were detected at concentrations exceeding their SVSLs to evaluate soil vapor conditions beneath the buildings to further develop LOEs regarding soil vapor attenuation at the Site (see third bullet item under Investigation Purpose). Therefore, one of the current investigation objectives was to collect and analyze vapor samples from immediately beneath the concrete slab foundations of the Garage Building, Shops Building, Hazardous Material Building, Salvage Building, and Tool Issue Building.

PCE was detected in sub-slab vapor beneath the Tool Issue Building at a concentration exceeding the residential SVSL derived using a 0.001 AF. No VOCs were detected in sub-slab vapor at concentrations exceeding the commercial/industrial SVSL derived using a 0.001 AF. When a more conservative 0.03 AF was applied, PCE was detected in sub-slab vapor beneath the Garage Building, Shops Building, Hazardous Material Building, Tool Issue Building, and Salvage Building at concentrations exceeding the residential SVSL. The PCE concentrations detected in sub-slab vapor beneath the Shops Building, Hazardous Material Building, and Tool Issue Building also exceeded the commercial/industrial SVSL. Additionally, TCE was detected in sub-slab vapor beneath the Tool Issue Building at a concentration exceeding the residential SVSL. TCE is a degradation product of PCE and can form where PCE is present. Therefore, PCE and TCE are considered sub-slab vapor COCs for the existing buildings at the Site.

Sewer Gas. The SCR Addendum recommended ambient air sampling of onsite subsurface pipe networks (e.g., sewers) in areas where detected VOC concentrations in soil gas exceed their SVSLs to assess preferential pathway VI potential from subsurface pipes entering buildings (see fourth bullet item under Investigation Purpose). Therefore, one of the current investigation objectives was to collect and analyze ambient air (sewer gas) samples from sewer line cleanouts within or immediately adjacent to buildings in areas where VOCs were previously detected in soil gas at concentrations exceeding their SVSLs.

No VOCs were detected in sewer gas at concentrations exceeding the screening levels (SLs) derived using a 0.001 AF. When a more conservative 0.03 AF was applied, benzene was detected in sewer gas associated with the Garage Building and Salvage Building at concentrations above the residential SL. Additionally, chloroform was detected in sewer gas associated with the Salvage Building at a concentration above the residential SL. Both of these buildings were previously used for equipment repair or dismantling, and the presence of benzene and chloroform in sewer gas may be attributable to Site use. Therefore, benzene is considered a sewer gas COC for the Garage Building and benzene and chloroform are considered sewer gas COCs for the Salvage Building.

Vapor Attenuation Factor Evaluation Findings

The findings of the vapor AF evaluation suggest the use of a 0.03 AF to establish Site-specific soil vapor cleanup goals would be overly conservative for the following reasons:

- The 0.03 AF was empirically-derived by the USEPA using VOC data primarily from single-family residences
 constructed with basements in states outside California with relatively cold climates, which are conditions
 with higher VI potential than those found at the Site.
- The 0.03 AF is a generic AF developed by USEPA for preliminary screening of VOCs detected in soil gas to identify areas or buildings that may warrant further investigation of the VI pathway. The generic 0.03 AF was

not specifically developed for determining cleanup levels. The USEPA approach to calculating cleanup levels includes use of alternative AFs based on site- or building-specific information. Draft supplemental VI guidance (California Environmental Protection Agency, 2020) also supports the use of USEPA's AFs (USEPA, 2015) for initial screening of buildings and the use of alternative approaches if supported by adequate technical and site information.

- USEPA identified the 0.03 AF for both soil gas and sub-slab vapor, which assumes no attenuation within the soil column. The calculated average attenuation factor for PCE, TCE, cDCE, and 1,2-DCP migrating from shallow soil to immediately beneath the Tool Issue Building foundation was 0.001 indicating attenuation within the soil column is occurring.
- The VOC concentrations detected in shallow soil gas indicate that SVSL exceedances are overwhelmingly attributed to SVSLs derived using the more conservative 0.03 AF. If the VOC concentrations detected in shallow soil gas were an order of magnitude higher than those detected at this Site, the extent of SVSL exceedances based on the 0.03 AF compared to the 0.001 AF would be much less pronounced. This indicates the potential need to take action across much of the Site is more heavily dependent on the generic 0.03 AF used to derive SVSLs than the magnitude of the shallow soil gas concentrations detected.
- California VI guidance (DTSC, 2011) recommends using a default AF of 0.001 for existing commercial buildings with samples collected at the contamination source, along with the maximum soil gas concentration (DTSC, 2011). For future residential and commercial buildings, California VI guidance recommends using default AFs of 0.001 and 0.0005, respectively. The California VI guidance considers the default AFs to reflect reasonably protective assumptions for conditions in California for the contamination of indoor air due to VI.
- DTSC is conducting a VI AF study to derive a California-specific AF for VI calculations (DTSC, 2021), which
 appears to be an acknowledgement that USEPA's generic 0.03 AF may not be applicable to California. The
 preliminary findings suggest an AF closer to 0.001 than 0.03, which is consistent with other Californiaspecific VI AF studies such as that performed by Ettinger et al. (2018), which resulted in an empirical AF of
 0.002 for soil gas.

Recommendations

Based on the understanding of Site conditions following the summer 2021 soil gas, sub-slab vapor, and sewer gas sampling effort and regulatory SLs in effect at the time, recommended next steps include:

- Implementing a remedial action to address VOC concentrations in soil gas that could pose an unacceptable risk to human health should the vapors migrate into indoor.
- Developing soil vapor cleanup levels using a vapor AF of 0.001. An AF of 0.001 is equal to the 0.001 AF identified for preliminary screening evaluations of future residential buildings and two times as conservative as the 0.0005 AF identified for preliminary evaluations of future commercial buildings in California VI guidance (DTSC, 2011). An AF of 0.001 is also consistent with the preliminary findings of DTSC's California-specific AF study.
- Proceeding with planned demolition of the unoccupied Tool Issue Building and removal of subsurface utility line connections to better facilitate soil gas remediation in the building vicinity.

AECOM 1-1

1.0 Introduction

The Sacramento Municipal Utility District (SMUD) conducted a supplemental site investigation at the SMUD 59th Street Corporation Yard (Site) in accordance with the *Scope of Work for Phase II* within the *First Amendment to Corrective Action Consent Agreement (CACA)*, Docket HWCA P1-13/14-007 (California Department of Toxic Substances Control [DTSC], 2018). Under the CACA, DTSC is the lead regulatory agency and SMUD is the responsible party for corrective action at the Site. SMUD conducted soil gas, sub-slab vapor, and sewer gas sampling in support of selecting and implementing a corrective action for the Site. The laboratory analytical data produced from this effort are considered valid and usable for their intended purposes within the constraints of the final usability qualifiers assigned in data quality assessment as detailed in Section 4.2.1. In accordance with Attachment 4 of the CACA, this Site Characterization Report (SCR) Addendum Number (No.) 2 document meets the requirements of preparing and submitting to DTSC an SCR that presents the data, summarizes the findings of the investigation, validates the data, and includes recommendations and conclusions.

This SCR Addendum No. 2 was prepared by AECOM Technical Services, Inc. (AECOM) on behalf of SMUD to document the work performed and the results from the investigation activities conducted at the Site from July through August 2021, which included:

- Installing vapor monitoring wells and Vapor Pin® sampling devices;
- Collecting and analyzing soil gas samples from new and existing vapor monitoring wells;
- Collecting and analyzing sub-slab vapor samples from new vapor pins; and
- Deploying and retrieving passive samplers from sewer cleanouts and analyzing sewer gas samples.

The Site investigation was performed according to the methods, protocols, and requirements specified in the *Site Characterization Sampling and Analysis Plan, SMUD 59th Street Corporation Yard* (SAP)(AECOM, 2018), except as noted in the *Site Characterization Sampling and Analysis Plan Addendum, SMUD 59th Street Corporation Yard* (SAP Addendum)(AECOM, 2020), the additional soil gas sampling notification letter in Appendix A, and SAP deviations identified in Section 3.5.

This SCR Addendum No. 2 is a companion document to the SCR (AECOM, 2019) and SCR Addendum (AECOM, 2021), which document the work performed and the results from investigation activities conducted at the Site from December 2018 through March 2021.

1.1 Site Description

The SMUD 59th Street Corporation Yard is the Site addressed in this SCR Addendum No.2. The DTSC EnviroStor website identifies the Site as the SMUD Corporation Yard (EnviroStor Identification Number 34490015). The Site is located at 1708 59th Street in Sacramento, California, approximately 5 miles east of downtown Sacramento (Figure 1-1). The Site is located on the Sacramento East United States (U.S.) Geological Survey Quadrangle Map in Township 8 North, Range 5 East, Section 9 (Mount Diablo Baseline and Meridian). The Site's approximate coordinates are 121 degrees (°) 26 minutes (') 18 seconds (") West longitude, 38° 33' 22" North latitude.

The Site encompasses 19.74 acres in an area of varied land use. Residential neighborhoods are situated to the west, commercial developments are situated to the north, and U.S. Highway 50 is located south of the Site. A California Department of Transportation laboratory is located east of the Site. The SMUD headquarters and other buildings of the SMUD campus are located southeast of the Site. The yard is bisected by the Sacramento Regional Transit light rail Gold Line and a 10-inch diameter petroleum product pipeline beneath the light rail right-of-way (Figure 1-1).

AECOM 1-2

Figure 1-2 presents Site features and the land parcels that make up the Site. The main portion of the Site is Assessor's Parcel Number (APN) 008-0010-009-0000 (12.89 acres). The wedge shaped portion of the Site situated south of the light rail line and north of U.S. Highway 50 consists of the following 10 parcels listed west to east: APN 011-0073-001-0000 (0.45 acre), APN 011-0073-002-0000 (1.11 acres), APN 011-0073-003-0000 (0.2 acre), APN 011-0073-004-0000 (0.39 acre), APN 011-0073-006-0000 (0.1 acre), APN 011-0073-008-0000 (1.79 acres), APN 011-0081-001-0000 (0.86 acre), APN 011-0081-003-0000 (0.86 acre), APN 011-0081-003-0000 (0.23 acre). The described wedge-shaped area totals 6.85 acres.

There are eight permanent buildings located on the Site including an office building, inventory warehouse, tool issue building, vehicle maintenance garage, workshops building, hazardous materials building, vehicle storage and salvage building, and a pre-fabrication building. In addition, there are designated areas for the storage of new and refurbished electrical transformers, power poles, power cable, and hazardous wastes. However, since the relocation of SMUD's equipment yard to their East Campus Operations Center, the Site was subsequently used for office space and warehouse storage. The Site lies approximately 30 feet above mean sea level. The Site is within a reclaimed floodplain and is, therefore, flat and generally lacking in any notable natural landform relief. The majority of the Site is surfaced with a minimum of 4-inch thick asphalt or concrete (SMUD, 1989).

1.2 Purpose and Objectives

The purpose of the current Site investigation was to evaluate seasonal and temporal variations in soil gas concentrations, further characterize the lateral and vertical extent of volatile organic compounds (VOCs) in soil gas, utilize sub-slab vapor data to further develop lines of evidence (LOEs) regarding soil vapor attenuation at the Site, and utilize sewer gas data to assess sewer lines as a potential preferential pathway for vapor intrusion (VI). The media-specific objectives are described in Sections 1.2.1 through 1.2.3.

1.2.1 Soil Gas

The SCR Addendum recommended conducting additional soil gas sampling at existing vapor monitoring wells in the summer for comparison to the fall/winter 2020/2021 sampling results to evaluate seasonal and temporal variations and support future risk management decisions. Therefore, one of the current investigation objectives was to conduct soil gas sampling in summer 2021 to obtain summer soil gas data to compare to the fall/winter 2020/2021 soil gas data reported in the SCR Addendum.

During the fall/winter 2020/2021 soil gas sampling event, the highest tetrachloroethene (PCE), trichloroethene (TCE), and *cis*-1,2-dichloroethene (cDCE) concentrations were detected in soil gas samples collected from vapor monitoring well SVM-1 immediately north of the Tool Issue Building, and the highest chloroform concentrations were detected in soil gas samples collected from vapor monitoring well VW30 in the parking lot between the Garage and Warehouse buildings. After vapor monitoring well SVM-1, the next highest PCE concentrations were detected in soil gas samples collected from vapor monitoring well VW24 near the southwest corner of the Garage Building. Based on the elevated VOC concentrations detected in soil gas from these vapor monitoring wells, the chemical release source locations were likely in the vicinity of these vapor monitoring wells. Existing vapor monitoring wells at the Site are spaced approximately 100 feet apart from each other. When elevated VOC concentrations are detected in soil gas collected from one vapor monitoring well, it is possible higher VOC concentrations indicative of a chemical release source could be present between that well and the next closest vapor monitoring well. Therefore, one of the current investigation objectives was to conduct further characterization to refine where the highest PCE, TCE, cDCE, and chloroform concentrations in soil gas are to support remedial design.

The SCR Addendum also recommended conducting additional soil gas characterization to better define the vertical extent of contamination, if necessary, to support remedial design. Based on the fall/winter 2021/2021 soil gas results, additional soil gas characterization was needed to better define the vertical extent of chloroform in the

AECOM 1-3

vicinity of vapor monitoring well VW30 where chloroform was detected in soil gas at concentrations of 650 and 1,300 micrograms per cubic meter (μ g/m³) at depths of 5.5 and 14.5 feet below ground surface (bgs), respectively. Therefore, one of the current investigation objectives was to install a deeper vapor monitoring well in the vicinity of vapor monitoring well VW30 and collect and analyze a soil gas sample from this well.

1.2.2 Sub-Slab Vapor

The SCR Addendum recommended sub-slab vapor sampling beneath existing buildings overlying areas where soil gas chemical of concerns (COCs) were detected at concentrations exceeding their soil vapor screening levels (SVSLs) to evaluate soil vapor conditions beneath the buildings to further develop LOEs regarding soil vapor attenuation at the Site. Therefore, one of the current investigation objectives was to collect and analyze vapor samples from immediately beneath the concrete slab foundations of the Garage Building, Shops Building, Hazardous Material Building, Salvage Building, and Tool Issue Building.

1.2.3 Sewer Gas

Sewer lines are potential preferential pathways for VI. VOCs at the Site may enter sewer pipes that intersect contaminated soil. VOCs that enter the sewer pipe can be transported beneath or directly into buildings. Although sewer plumbing systems inside buildings are designed to prevent sewer gases from entering the building, sewer system components may leak or become compromised (California Environmental Protection Agency [CalEPA], 2020). The SCR Addendum recommended ambient air sampling of onsite subsurface pipe networks (e.g., sewers) in areas where detected VOC concentrations in soil gas exceed their SVSLs to assess preferential pathway VI potential from subsurface pipes entering buildings. Therefore, one of the current investigation objectives was to collect and analyze ambient air (sewer gas) samples from sewer line cleanouts within or immediately adjacent to buildings in areas where VOCs were previously detected in soil gas at concentrations exceeding their SVSLs.

AECOM 2-1

2.0 Background

Site background information, including Site history, a summary of previous Site investigations, a description of the local geology and hydrogeology, and identification of potential exposure pathways for human and ecological receptors is provided in Section 2.0 of the SCR Addendum (AECOM, 2021). The most recent previous investigation is documented in Sections 3.0 through 6.0 of the SCR Addendum.

3.0 Site Investigation Scope, Approach, and Methods

The following subsections describe the Site investigation scope and approach, field and analytical methods, quality assurance (QA)/quality control (QC) measures, and SAP deviations.

3.1 Scope and Approach

The Site investigation activities conducted in July and August 2021 included soil gas, sub-slab vapor, and sewer gas sampling (hereinafter referred to as the current investigation). The current investigation scope and approach for soil gas, sub-slab vapor, and sewer gas sampling are described in Sections 3.1.1 through 3.1.3, respectively.

3.1.1 Soil Gas Investigation

As discussed in Section 1.2.1, additional soil gas characterization was conducted to (1) obtain summer soil gas data to compare to fall/winter 2020/2021 soil gas data; (2) refine where the highest PCE, TCE, cDCE, and chloroform concentrations in soil gas are to support remedial design; and (3) better define the vertical extent of chloroform in the vicinity of vapor monitoring well VW30 to support remedial design. Table 3-1 lists soil gas samples collected during the current investigation, their respective sample depths, and analyses performed. Soil gas sampling locations are shown on Figure 3-1.

The current investigation soil gas sampling approach was to collect soil gas samples from 44 existing permanent vapor monitoring well locations (VW14 through VW57) that were previously sampled during the fall/winter 2020/2021 sampling event. New vapor monitoring wells VW58 through VW61 and VW63 through VW66 were proposed as dual-completion wells with sampling probes placed at 5.5 and 14.5 feet bgs. These new vapor monitoring wells were proposed as step-out locations approximately 20 to 35 feet from vapor monitoring wells SVM-1, VW24, and VW30. Vapor monitoring well VW62 was proposed as single-completion well with a sampling probe placed at 25.5 feet bgs immediately adjacent to vapor monitoring well VW30. A single round of soil gas sampling was planned with the sample analysis for VOCs at a fixed laboratory using United States Environmental Protection Agency (USEPA) Method Toxic Organics (TO)-15.

3.1.2 Sub-Slab Vapor Investigation

As discussed in Section 1.2.2, sub-slab vapor sampling was conducted to evaluate soil vapor conditions beneath buildings to further develop LOEs regarding soil vapor attenuation at the Site. Table 3-2 lists the sub-slab vapor samples collected during the current investigation and analyses performed. Sub-slab vapor sampling locations are shown on Figure 3-1.

3.1.3 Sewer Gas Sampling

As discussed in Section 1.2.3, sewer gas sampling was conducted in sewer line cleanouts within and immediately adjacent to buildings in areas where VOCs were previously detected in soil gas at concentrations exceeding their SVSLs to assess preferential pathway VI potential from sewer lines entering the buildings. Table 3-3 lists the sewer gas samples collected during the current investigation and the analysis performed. Sewer gas sampling locations are shown on Figure 3-1.

3.2 Field Methods

This section provides an overview of the field methods used to conduct the current investigation. Detailed procedures associated with vapor monitoring well installation and sampling are presented in the SAP (AECOM, 2018) and SAP Addendum (AECOM, 2020). The field investigation was performed by AECOM with support from B&B Locating, Inc. (B&B) and Confluence Environmental, Inc. (Confluence) (C-57 License #913194). B&B provided

subsurface utility locating services. Confluence provided pavement coring, hand augering, vapor well installation, and soil gas/sub-slab vapor sampling services.

3.2.1 Site Reconnaissance and Proposed Sample Location Marking

In preparation for the field investigation, AECOM marked the asphalt or pavement using white paint to indicate the proposed vapor monitoring well and sub-slab vapor sampling locations. Prior to marking the locations, reconnaissance was performed in the area surrounding each proposed vapor monitoring well or sub-slab vapor sampling location to look for surface evidence of subsurface utilities (e.g., utility vaults, manholes, light poles) or other possible hazards such as overhead utility lines. If a potential hazard was identified, the affected proposed vapor monitoring well or sub-slab vapor sampling location was adjusted to avoid the hazard.

3.2.2 Subsurface Utility Clearance

AECOM contacted Underground Service Alert of Northern California and Nevada (USA North 811) at least 2 working days prior to initiation of subsurface activities to notify utility service providers of the work to be performed and allow them to mark any utility lines that may be present on Site. USA North 811 Ticket Number X118001561 (valid July 1 through 27, 2021) was issued for intrusive activities associated with the current investigation. B&B conducted subsurface utility clearances at proposed vapor monitoring well and sub-slab vapor sampling locations. If a subsurface utility line or unknown subsurface hazard was identified during the subsurface utility clearance, the affected proposed vapor monitoring well or sub-slab vapor sampling location was adjusted to avoid the hazard.

3.2.3 Permitting

AECOM obtained Permits 62027 through 62056 from the Sacramento County Environmental Management Department (SCEMD) for vapor monitoring wells installed as part of the previous investigation in November and December 2020. Permit 62056 applied to step-out/contingency vapor monitoring wells. AECOM coordinated with SCEMD, who determined that Permit 62056 was still valid and could be applied to the vapor monitoring wells proposed as part of the current investigation. AECOM provided SCEMD with daily status updates while work covered by the permit was being performed.

3.2.4 Borehole Advancement and Soil Logging

Boreholes intended for vapor monitoring well installation (VW58 through VW66) were initially advanced by Confluence to 5 feet bgs using a 3.5-inch diameter hand auger. Soil lithology for the initial 5 feet was logged by the field geologist using the soil cuttings removed from the borehole. Beyond 5 feet bgs, the boreholes were advanced by Confluence using a direct push technology (DPT) rig. Continuous soil cores were collected in acetate liners from 5 feet bgs to the total borehole depth for lithologic description, except at deeper borehole VW66, where continuous soil cores were collected from 15 feet bgs to the total borehole depth. A photoionization detector was used to screen the hand auger soil cuttings and DPT soil cores for VOCs.

3.2.5 Vapor Monitoring Well Installation and Soil Gas Sampling

Confluence constructed vapor monitoring wells VW58A/B through VW61A/B, VW62, VW63A/B, and VW64A/B from on July 6 and 7, 2020 and vapor monitoring wells VW65A/B and VW66A/B on July 14, 2021. All vapor monitoring wells were installed in areas paved with asphalt or concrete of varying thicknesses ranging from 3 to 6 inches. To ensure that the shallowest vapor probes were installed at least 5 feet below the top of the soil, all vapor monitoring well construction specification depths were referenced to the bottom of pavement/top of soil (i.e., the bottom of pavement/top of soil = 0 feet bgs). Vapor monitoring well VW62 was constructed by placing the vapor probe at a depth of 25.5 feet bgs within a 1-foot sand pack (interval of 25 to 26 feet bgs). Vapor monitoring wells VW58A/B through VW61A/B and VW63A/B through VW66A/B were constructed by placing vapor probes at depths of 5.5 and 14.5 feet bgs within a 1-foot thick sand pack (intervals of 5 to 6 and 14 to 15 feet bgs). Vapor monitoring well

designation "A" was assigned to probes at 5.5 feet bgs, and vapor monitoring well designation "B" was assigned to probes at 14.5 feet bgs.

Approximately 1 foot of dry granular bentonite was placed above each sand pack. Additional dry granular bentonite was placed in 1-foot lifts and hydrated to form a seal between the lower sampling depth and the upper sampling depth and between the upper sampling depth and the ground surface. Each probe had 1/4-inch diameter Teflon™ tubing extending to the ground surface to enable sample collection from the target depths. A dedicated gas-tight three-way valve was attached to the end of the exposed tubing to facilitate connection of sampling equipment and to seal the tubing when not in use. A flush-mount well box was installed at the surface to protect the exposed tubing and valve.

New vapor monitoring wells were allowed to equilibrate for a minimum of 48 hours prior to soil gas sampling. Soil gas sampling was not performed unless at least 5 days had passed following a significant rain event (i.e., 1/2 inch or greater of rainfall during a 24-hour period). On July 6, 2021, a SMUD contractor flushed the water lines at the Site by releasing water from fire hydrants in the central portion of the Site. This activity was treated as a significant rain event; therefore, soil gas sampling at vapor monitoring wells in the areas where the water releases occurred was delayed until at least 5 days had passed. Additionally, the soil vapor extraction system located at outside the Tool Issue Building was temporarily shut down at least 2 days prior to soil gas sampling.

A shut-in test was conducted prior to purging/sampling to check for leaks in the aboveground sampling system. In order to remove stagnant air from the sampling system, three volumes of air corresponding to the void space in the sample tubing and pore space of the sand pack were purged prior to sample collection. A leak test was conducted each time a sample was collected to evaluate whether an adequate seal was established in the sampling train and at the soil vapor probe interface with the ground surface. Helium and 1,1-DFA were used to test for ambient air leaks. A helium detector was used to monitor for leaks during the leak test. 1,1-DFA was included in the USEPA Method TO-15 analyte list to identify any leaks that may have occurred during sample collection, except for six samples for which only helium was used for the leak test. These six samples were analyzed for helium by ASTM International (ASTM) Method D-1946 in addition to USEPA Method TO-15.

AECOM and Confluence collected soil gas samples from vapor monitoring wells VW14, VW15, VW16A/B through VW61A/B, VW62, VW63A/B through VW66A/B, and SVM-1A/B through SVM-3A/B in July 2020. Confluence re-sampled vapor monitoring wells VW17A, VW20A, VW21A, VW24A, VW29A, VW35A, VW44A, VW55A, VW58A/B through VW60A/B, VW61A, VW62, VW63A/B, and VW64A in August 2020 because elevated concentrations of the leak-check compound (1,1-difluoroethane [DFA]) were detected in the July 2021 soil gas samples collected from these wells. All soil gas samples were collected using 1-liter passivated stainless steel canisters.

3.2.6 Vapor Pin[®] Installation and Sub-Slab Vapor Sampling

Vapor Pin® sampling devices were utilized to facilitate sub-slab vapor sampling beneath the Garage Building (Building F), Shops Building (Building G), Hazardous Material Building, Salvage Building (Building J), and Tool Issue Building (Building H). Confluence installed Vapor Pin® sampling devices at two locations each within the Garage Building (F-SS01 and F-SS02) and Shops Building (G-SS01 and G-SS02) and one location each within the Hazardous Material Building (HMB-SS01), Salvage Building (J-SS01), and Tool Issue Building (H-SS01). Vapor Pin® sampling devices were installed in accordance with the Vapor Pin® installation standard operating procedure (Vapor Pin Enterprises, Inc., 2021). Sub-slab vapor sampling followed the same approach as for vapor monitoring well sampling described in Section 3.2.5.

AECOM and Confluence collected sub-slab vapor samples from locations FSS01, FSS01, GSS01, GSS02, HMBSS01, HSS01, and JSS01 in July 2020. Confluence re-sampled locations FSS01, FSS01, GSS01, GSS02,

HMBSS01, and JSS01 in August 2020 because elevated concentrations of the leak-check compound (1,1- DFA) were detected in the July 2021 sub-slab vapor samples collected from these locations. All sub-slab vapor samples were collected using 1-liter passivated stainless steel canisters.

3.2.7 Sewer Gas Sampling

Beacon Environmental (Beacon) passive air sampling devices were utilized to collect sewer gas samples from sewer cleanout locations within the Garage Building, adjacent to the Salvage Building, and within and adjacent to the Tool Issue Building. AECOM deployed and retrieved the passive sampling devices in accordance with the instructions included with the Beacon Field Kit for Passive Air Sampling (Beacon, 2021). AECOM deployed the passive air sampling devices on July 8, 2021 and retrieved the samplers on July 15, 2021 for a 7-day sampling duration.

3.2.8 Land Surveying

Vapor monitoring well and sub-slab vapor sampling locations were determined by measuring distances from previously surveyed boreholes and other previously mapped Site features.

3.2.9 Investigative-Derived Waste Management and Disposal

Investigative-derived waste (IDW) included hand auger cuttings (e.g., soil) and soil cores from vapor monitoring well installation, acetate liners, disposable personal protective equipment (e.g., nitrile gloves, ear plugs, Tyvek® coveralls), and paper towels. The soil IDW will be characterized and disposed of at an appropriate off-site disposal facility. All other IDW was disposed of as general refuse in a garbage dumpster located on Site.

3.3 Analytical Methods

Soil gas and sub-slab vapor samples collected for laboratory analysis were submitted to Eurofins Air Toxics, LLC (Eurofins) in Folsom, California, following chain-of-custody protocol. Soil gas and sub-slab vapor samples were analyzed for VOCs by USEPA Method TO-15. Additionally, soil gas samples from vapor monitoring wells VW43A/B, VW45A/B, and VW46A/B were analyzed for helium by ASTM Method D-1946.

Sewer gas samples collected for laboratory analysis were submitted to Beacon in Forest Hill, Maryland, following chain-of-custody protocol. Sewer gas samples were analyzed for VOCs by USEPA Method TO-17.

3.4 Quality Assurance/Quality Control

QA/QC samples collected in the field included field duplicates and field replicates analyzed for VOCs. Eleven field duplicate samples and one field replicate were collected for 107 normal soil gas samples (11 percent frequency), not counting 20 soil gas samples that were replaced as discussed below. The field duplicate samples were collected from vapor monitoring wells VW15, VW27B, VW34A, VW36B, VW37B, VW38A, VW42A, VW47A, VW57B, VW63B, and VW66B. The field replicate sample was collected from well VW21A. The soil gas field duplicate and field replicate sample pairs are listed below.

- SG-VW15-02 and SG-VW15-03
- SG-VW21A-05 and SG-VW21A-06 (field replicate pair)
- SG-VW27B-02 and SG-VW27B-03
- SG-VW34A-02 and SG-VW34A-03
- SG-VW36B-02 and SG-VW36B-03
- SG-VW37B-03 and SG-VW37B-04
- SG-VW38A-02 and SG-VW38A-03

- SG-VW42A-03 and SG-VW42A-04
- SG-VW47A-02 and SG-VW47A-03
- SG-VW57B-04 and SG-VW57B-05
- SG-VW63B-02 and SG-VW63B-03
- SG-VW66B-01 and SG-VW66B-02

One field duplicate sample was collected for seven normal sub-slab vapor samples (14 percent frequency), not counting sub-slab vapor samples that were rejected as discussed below. The field duplicate sample pair (SSV-F-SS01-02 and SSV-F-SS01-03) was collected from sub-slab vapor location SSV-F-SS01 inside the Garage Building.

One field duplicate sample was collected for four normal sewer gas samples (25 percent frequency). The field duplicate sample pair (H-SEW-01P and H-SEW-02P) was collected from a sewer cleanout adjacent to the Tool Issue Building.

Leak-check compound 1,1-DFA was detected in many July 2021 soil gas and sub-slab vapor samples. If the detected concentration of the leak check compound is greater than or equal to 10 times the laboratory reporting limit (RL) for the target analyte(s), then corrective action is necessary according to the *Advisory – Active Soil Gas Investigations* (CalEPA, 2015). The 1,1-DFA concentrations detected in the following 31 soil gas samples and 6 sub-slab vapor samples collected in July 2021 exceeded 10 times the lowest laboratory RL for the target analytes in their respective samples. Replacement samples were collected for the samples identified in bold font.

Soil Gas Samples

- SG-VW17A-02 and SG-VW17B-03
- SG-VW19B-02
- SG-VW20A-02 and SG-VW20B-02
- SG-VW21A-03
- SG-VW22B-02
- SG-VW24A-04
- SG-VW28B-02
- SG-VW29A-02
- SG-VW30B-03
- SG-VW31B-02
- SG-VW32B-02
- SG-VW35A-02 and SG-VW35B-02
- SG-VW44A-02
- SG-VW47B-02
- SG-VW50B-02
- SG-VW53B-02
- SG-VW55A-02
- SG-VW58A-01 and SG-VW58B-01
- SG-VW59A-01 and SG-VW59B-01
- SG-VW60A-01 and SG-VW60B-01
- SG-VW61A-01
- SG-VW62-01
- SG-VW63A-01 and SG-VW63B-01
- SG-VW64A-01

Sub-Slab Vapor Samples

- SSV-F-SS01-01
- SSV-F-SS02-01
- SSV-G-SS01-01
- SSV-G-SS02-01
- SSV-HMB-SS01-01
- SSV-J-SS01-01

Although the leak tests conducted in the field using helium during well purging did not indicate leakage, it was believed the sampling manifolds were the source of the leaks because there were multiple connections which increased the leak potential. As discussed in Sections 3.2.5 and 3.2.6, Confluence re-sampled vapor monitoring wells VW17A, VW20A, VW21A, VW24A, VW29A, VW35A, VW44A, VW55A, VW58A/B through VW60A/B, VW61A, VW62, VW63A/B, and VW64A and sub-slab vapor locations FSS01, FSS02, GSS01, GSS02, HMBSS01, and JSS01 in August 2020. For the re-sampling effort, simple flow controllers were used instead of the more complex sampling manifolds which minimized the number of sampling train connections. This corrective action resolved the issue, except at vapor well VW21A, so two additional replacement samples (field replicates) were collected from this well in late August 2021. The 1,1-DFA concentrations detected in the vapor well VW21A replacement soil gas samples slightly exceeded 10 times the lowest laboratory RL for the target analytes; no additional replacement soil gas samples were collected from this well.

Replacement soil gas samples were not collected for the other samples that had 1,1-DFA detections at concentrations exceeding 10 times the lowest laboratory RL for the target analytes because these samples were collected from 14.5 feet bgs, which are less important for evaluating VI potential than the samples collected from 5.5 feet bgs. Additionally, the corresponding vapor monitoring wells were previously sampled and not new wells being sampled for the first time.

3.5 Sampling and Analysis Plan Deviations

Deviations from the SAP (AECOM, 2018), SAP Addendum (AECOM, 2019), and soil gas sampling notification letter (Appendix A) are described in the bullets below.

- Soil gas samples were not collected at 5.5 feet bgs from vapor monitoring wells VW23 and VW54. On July 14, 2021, attempts to purge stagnant air from vapor monitoring wells VW23 and VW54 prior to sample collection at 5.5 feet bgs were unsuccessful due to low-flow conditions. After well purging was initiated, vacuum pressure in the wells gradually increased until it reached equilibrium with the maximum pressure of the vacuum pump causing air flow to stop before the required three purge volumes of air could be removed from the wells. On July 15, 2021, a second attempt at purging vapor monitoring wells VW23 and VW54 was successful using a larger vacuum pump. However, the attempt to collect soil gas samples from these wells after purging was unsuccessful because vacuum pressure in the wells eventually reached equilibrium with the vacuum pressure within the sample collection canisters causing air flow to stop before the entire 1 liter sample volume could be collected. The lack of summer 2021 soil gas data for these wells is not considered to have affected the project data quality objectives in a negative way because new vapor monitoring well VW58 was installed approximately 35 feet from vapor monitoring well VW23 and the soil gas data from 5.5 feet bgs at this well provides the necessary information for this part of the Site. Likewise, new vapor monitoring well VW54 and the soil gas data from 5.5 feet bgs at this well provides the necessary information for this part of the Site.
- A replacement soil gas sample was not collected from vapor monitoring well VW62. An initial soil gas sample (SG-VW62-01) was collected from vapor monitoring well VW62 on July 15, 2021 and analyzed for VOCs. The leak check compound 1,1-DFA was detected at a concentration greater than 10 times the RL for the target analytes indicating leakage occurred during sample collection. No other analytes were detected in the sample, which could be due to dilution with ambient air. Therefore, the analytical results for this sample were rejected during data validation. An attempt to collect a replacement soil gas sample was made on August 16, 2021. During well purging, water was encountered in the well tubing, which prevented sample collection from proceeding. Vapor monitoring well VW62 was installed during the current investigation to help define the vertical extent of chloroform in the vicinity of vapor monitoring well VW30 where chloroform was detected at the highest concentration in the soil gas sample collected at 14.5 feet bgs during the previous investigation. However, during the current investigation, the highest chloroform concentration

detected in soil gas was in the sample collected from 5.5 feet bgs at vapor monitoring well VW30. Although the vertical extent of chloroform was not defined by the soil gas sample collected at 14.5 feet bgs at vapor monitoring well, there does not appear to be a deeper source of chloroform; therefore, the lack of soil gas data from deep vapor monitoring well VW62 does not significantly affect the project DQOs in a negative way.

AECOM 4-1

4.0 Investigation Results

This section presents the results of the current investigation conducted in July and August 2021.

4.1 Geology and Hydrogeology

Based on lithologic logging of boreholes VW58 through VW66, the Site soil consists of a heterogeneous combination of coarse-grained and fine-grained material throughout the areas and depths that were sampled consistent with previous boreholes advanced at the Site. The coarse-grained soil is predominantly comprised of poorly-graded sand and silty sand. The fine-grained soil is predominantly comprised of inorganic silts and clays and very fine sands. Neither bedrock nor groundwater was encountered in any of the boreholes, the deepest of which was advanced to 26 feet bgs. Appendix B contains the lithologic logs of the vapor well boreholes.

4.2 Analytical Results

4.2.1 Data Validation and Data Usability

Laboratory analytical data for the soil gas and sub-slab vapor samples collected during the current investigation were validated by the AECOM project chemist. The laboratory analytical data for the passive sewer gas samples collected during the current investigation are considered screening-level data and therefore were not validated.

The data validation results and data quality assessment are documented in the data validation summary contained within Appendix C. Laboratory analytical reports from Eurofins and Beacon are contained within Appendix D. Validation is performed to ensure the quality of collected data and to assess limitation on usability, as well as to evaluate laboratory compliance with specified methods and protocols. The data are considered valid and usable for their intended purposes within the constraints of the final usability qualifiers assigned in data quality assessment. Data qualified with the "J" qualifier are considered estimated and usable with acceptable quantitative uncertainty. Data qualified with the "U" qualifier are considered non-detected. Non-detected results are reported at the laboratory method detection limit (MDL), except for blank-qualified data, which are reported at the measured value. Data qualified with the "R" qualifier are considered rejected and unusable.

For VOCs by USEPA Method TO-15, leak check compound 1,1-DFA was detected at concentrations that exceeded 10 times the lowest RL of the target analytes in 38 samples. Replacement samples were collected for 24 of these 38 samples along with two field duplicate samples and analyzed for VOCs. 1,1-DFA was detected at an elevated concentration in 1 of the 24 replacement samples, and two additional replacement samples (field replicates) were collected for this sample. Samples with detections of 1,1-DFA at elevated concentrations were excluded from the validated data set if replacement samples were collected. All results from the 12 samples that were not recollected and the two field replicate replacement samples were qualified for potential low bias (J-), having estimated RLs (UJ) with potential false negative results, or rejected (R) due to possible dilution with ambient air. In addition, the laboratory noted that the USEPA released a document outlining possible data quality concerns for the measurement of acrolein by Method TO-15. Acrolein was not detected in any samples and these results were qualified for estimated RLs (UJ) due to potential measurement issues.

4.2.2 Soil Gas

In order to evaluate VI using subsurface data (e.g., soil gas), a vapor attenuation factor (AF) was applied to the ambient air (e.g., indoor air) screening level (SL) to estimate a corresponding SVSL. Vapor attenuation refers to the reduction in VOC concentrations that occurs during vapor migration in the subsurface, coupled with the dilution that can occur when the vapors enter a building and mix with indoor air (Johnson and Ettinger, 1991). The vapor AF represents the ratio between the indoor air concentration for a given VOC and its soil gas concentration. California

AECOM 4-2

VI guidance recommends using a default AF of 0.001 for existing commercial buildings with samples collected at the contamination source, along with the maximum soil gas concentration (DTSC, 2011). California draft supplemental VI guidance (CalEPA, 2020) recommends using the USEPA empirically-derived AF of 0.03 (USEPA, 2015) for preliminary screening of VOCs detected in soil gas. Due to uncertainties in whether the 0.03 AF will ultimately be adopted for use in California, the following evaluation of the current investigation soil gas results used both the 0.03 AF and the 0.001 AF.

Tables 4-1 and 4-2 present the current investigation maximum analyte concentrations detected in soil gas compared to SVSLs. The SVSLs for all analytes except total petroleum hydrocarbons as gasoline (TPHg) were derived by dividing the DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note 3 residential and commercial/industrial ambient air SLs (DTSC 2020) by either the 0.03 AF (CalEPA, 2020) in Table 4-1 or the 0.001 AF (DTSC, 2011) in Table 4-2. TPHg does not have established DTSC SLs; therefore, the TPHg SVSLs were derived by dividing the San Francisco Bay Regional Water Quality Control Board residential and commercial/industrial indoor air Environmental Screening Levels (California State Water Resources Control Board [SWRCB], 2019) by either the 0.03 AF in Table 4-1 or the 0.001 AF in Table 4-2. Ten analytes (benzene, bromodichloromethane [BDCM], chloroform, cDCE, 1,2-dichloropropane [DCP], 1,4-dioxane, ethylbenzene, naphthalene, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.03 AF. The highest benzene, 1,4-dioxane, ethylbenzene, and naphthalene concentrations were detected in soil gas samples collected at a depth of 14.5 feet. The highest BDCM, chloroform, cDCE, 1,2-DCP, PCE, and TCE concentrations were detected in shallower soil gas samples collected from a depth of 5.5 feet or less. In comparison, only five of these analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.001 AF.

The analytes detected in shallow soil gas (i.e., 5.5 feet or less) are of particular interest when evaluating the potential for VI to indoor air. Tables 4-3 and 4-4 present the current investigation analyte concentrations detected in shallow soil gas compared to residential and commercial/industrial SVSLs derived using the 0.03 and 0.001 AFs, respectively. Eight analytes (benzene, BDCM, chloroform, cDCE, 1,2-DCP, ethylbenzene, PCE, and TCE) were detected in shallow soil gas at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.03 AF. In comparison, only five of these analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.001 AF.

Benzene and ethylbenzene concentrations detected in soil gas samples and the lateral extent of benzene and ethylbenzene concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-1 and 4-2, respectively.

BDCM and chloroform concentrations detected in soil gas samples and the lateral extent of BDCM and chloroform concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-3 and 4-4, respectively.

PCE, TCE, and cDCE concentrations detected in soil gas samples and the lateral extent of PCE, TCE, and cDCE concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-5 and 4-6, respectively.

4.2.3 Sub-Slab Vapor

Tables 4-5 and 4-6 present the current investigation analyte concentrations detected in sub-slab vapor compared to residential and commercial/industrial SVSLs derived using the 0.03 and 0.001 AFs, respectively. When using the 0.03 AF, two analytes (PCE and TCE) were detected at concentrations exceeding residential SVSLs and only PCE was detected at a concentration exceeding commercial/industrial SVSLs. The maximum PCE and TCE concentrations were detected in the sub-slab vapor sample collected beneath the Tool Issue Building. In

AECOM 4-3

comparison, when using the 0.001 AF, only PCE was detected at a concentration exceeding residential SVSLs and no analytes were detected above commercial/industrial SVSLs. PCE and TCE concentrations detected in sub-slab vapor are presented on Figure 4-7.

4.2.4 Sewer Gas

Tables 4-7 and 4-8 present the current investigation analyte concentrations detected in sewer soil gas compared to residential and commercial/industrial SLs derived using the 0.03 and 0.001 AFs, respectively. When using the 0.03 AF, two analytes (benzene and chloroform) were detected in sewer gas at concentrations exceeding residential SLs, and no analytes were detected at concentrations exceeding commercial/industrial SLs. No analytes were detected above residential and commercial/industrial SLs derived using the 0.001 AF. Benzene and chloroform concentrations detected in sewer gas are presented on Figure 4-7.

5.0 Evaluation of Vapor Attenuation Factors

The vapor AF is a unitless number defined as the ratio between the indoor air concentration (C_{IA}) for a given VOC and its subsurface concentration as follows, using soil gas concentrations (C_{SG}) as an example:

$$AF = \frac{C_{IA}}{C_{SG}}$$

The vapor AF is an inverse measure of the overall decrease in concentration due to attenuation mechanisms that occur as vapors migrate from the subsurface into a building. The greater the attenuation, the smaller the AF value. As discussed in Section 4.2.2, a vapor AF was applied to the indoor air screening level (IASL) to estimate a corresponding SVSL in order to evaluate VI using soil gas data. This was done by rearranging the equation above where the SVSL is the concentration in soil gas (CsG) and the IASL is the concentration in indoor air (CIA).

$$SVSL = \frac{IASL}{AF}$$

In the future, the same equation will be used to establish Site-specific soil gas cleanup goals where the calculated SVSL will be the cleanup goal.

California VI guidance previously recommended using a default AF of 0.001 for existing commercial buildings with samples collected at the contamination source, along with the maximum soil gas concentration (DTSC, 2011). For future residential and commercial buildings, California VI guidance previously recommended using default AFs of 0.001 and 0.0005, respectively. The California VI guidance considered the default AFs to reflect reasonably protective assumptions for conditions in California for the contamination of indoor air due to VI. The default AFs were based on the following assumptions:

- The subsurface is reasonably homogenous (uniform).
- No fractures exist in the subsurface.
- Fluctuations of the groundwater surface are minimal.
- Preferential pathways (utility corridors) do not exist.
- Biodegradation of vapor is not occurring.
- Contaminants are homogeneously distributed.
- Contaminant vapors enter a building primarily through cracks or seams in the foundation and walls.
- Building ventilation rates and the indoor-outdoor pressure differentials are constant.
- VI model assumptions are representative of site conditions.

California draft supplemental VI guidance (CalEPA, 2020) recommends using the USEPA empirically-derived AF of 0.03 (USEPA, 2015) for preliminary screening of VOCs detected in soil gas. However, USEPA derived the 0.03 AF using VOC data primarily from single-family residences constructed with basements in states outside California with relatively cold climates. Basement construction and building heating are factors that can increase VI potential. Therefore, the 0.03 AF may overpredict VI for buildings without basements in warmer climates that are more typical in California and for larger commercial/industrial buildings with greater dilution potential when vapors entering the building mix with indoor air.

For most buildings in the USEPA VI Database, only one indoor air and one subsurface sample were collected per building. The SWRCB has updated its GeoTracker database to facilitate reporting of vapor data and building-specific

information. Once sufficient data has been compiled, CalEPA will evaluate the data to determine if there is sufficient justification to support California-specific AFs (CalEPA, 2020). Compiled data will be evaluated to assess whether building-type AFs can be derived. California data can be used to identify how AFs vary by climate throughout the state. Data from multiple sampling locations at a given building and from multiple rounds of sampling will help quantify the spatial and temporal variability, so that VI can be more effectively understood.

Although the draft supplemental VI guidance (CaIEPA, 2020) supports the use of USEPA's AFs (USEPA, 2015) for initial screening of buildings, the guidance also supports the use of alternative approaches if supported by adequate technical and site information. An alternative approach should evaluate the spatial and temporal variability of VOC concentrations in various media; be based on multiple LOEs; account for potentially affected building types, and current and future site and building conditions (CaIEPA, 2020). DTSC is conducting a VI AF study to derive a California-specific AF for VI calculations (DTSC, 2021), which when complete, will provide the redevelopment sector with an additional tool to facilitate the land revitalization process. Although the study is under peer review and the associated report has not been released to the public, the study investigators have presented preliminary findings at industry conferences (Bosan et al., 2020 and Abbasi et al. 2021). The preliminary findings suggest an AF closer to 0.001 than 0.03, which is consistent with other California-specific VI AF studies such as that performed by Ettinger et al. (2018), which resulted in an empirical AF of 0.002 for soil gas.

5.1 Site-Specific Lines of Evidence

Multiple LOEs are used to provide a more comprehensive understanding of VI and to increase confidence in making site management decisions regarding VI. LOEs may be weighted differently for each site and building, depending on their characteristics and quality. All LOEs should be considered when estimating human exposure. Some LOEs may be conflicting. Therefore, a reasonable risk management decision should be made as compelled by the interpretation of all the data (CalEPA, 2020). Site-specific LOEs evaluated in Sections 5.1.1 through 5.1.3 include proximity to subsurface VOC source(s), soil gas concentrations, and temporal variability.

5.1.1 Proximity to Subsurface VOC Source(s)

According to the draft supplemental VI guidance (CalEPA, 2020), buildings closest to the greatest subsurface contaminant concentrations should be prioritized for VI evaluations. The closer a building is laterally and vertically to subsurface VOC contamination, the greater the potential for VI. Groundwater sampling performed as part of previous investigations did not identify any VOC contaminant plumes (AECOM, 2019). Therefore, groundwater contamination is not considered to be a source for VI potential.

Soil gas analytical results from the fall/winter 2020/2021 and summer 2021 sampling events indicate the highest PCE, TCE, cDCE, and 1,2-DCP concentrations were detected in shallow soil gas at vapor monitoring well SVM-1, which is located immediately adjacent to the north side of the Tool Issue Building. PCE, TCE, and cDCE were detected at concentrations several orders of magnitude higher in the sample collected at 4 feet bgs compared to the sample collected at 14 feet bgs. For example, PCE, TCE, and cDCE were detected at concentrations of 330,000, 18,000, 53,000, and 820 µg/m³, respectively, in the soil gas sample collected at 4 feet bgs compared to 460, 85, and 63 µg/m³ for PCE, TCE, and cDCE, respectively, in the soil gas sample collected from 14 feet bgs during the summer 2021 sampling event. 1,2-DCP was not detected above the 1.2 µg/m³ MDL in the sample collected from 14 feet bgs. This suggests a relatively shallow chemical release occurred in the vicinity of vapor monitoring well SVM-1.

Tool Issue Building sub-slab vapor sampling location H-SS01 is approximately 15 feet from vapor monitoring well SVM-1. PCE and TCE were detected at concentrations of 750 and 21 µg/m³, respectively, in the HSS01 sub-slab vapor sample and cDCE and 1,2-DCP were not detected. The attenuation in PCE and TCE concentrations from vapor monitoring well SVM-1 at 4 feet bgs to just below the Tool Issue Building foundation at sub-slab vapor sampling location H-SS01 was calculated by dividing the PCE and TCE concentrations detected at H-SS01 by the

PCE and TCE concentrations detected at SVM-1. The calculated attenuation factors for PCE and TCE migrating from shallow soil to immediately beneath the Tool Issue Building foundation were 0.002 and 0.001, respectively. Because cDCE and 1,2-DCP were not detected in the sub-slab vapor sample collected from sampling location H-SS01, the attenuation in cDCE and 1,2-DCP concentrations from vapor monitoring well SVM-1 at 4 feet bgs to just below the Tool Issue Building foundation at sub-slab vapor sampling location H-SS01 was calculated by dividing the cDCE and 1,2-DCP MDL concentrations for the samples collected at H-SS01 by the cDCE and 1,2-DCP concentrations detected at SVM-1. The calculated attenuation factors for cDCE and 1,2-DCP migrating from shallow soil to immediately beneath the Tool Issue Building foundation were less than 0.001 (0.00003) and 0.001, respectively. The average AF for these four VOCs is 0.001. This is notable because the draft supplemental VI guidance (CalEPA, 2020) specifies an AF of 0.03 for both sub-slab vapor to indoor air and soil gas to indoor air, which assumes no attenuation for VOCs migrating from shallow soil to immediately below the building foundation. This suggests the 0.03 AF may be overly conservative for the subsurface conditions beneath the Tool Issue Building.

Indoor air sampling was performed at six locations within the Tool Issue Building in 2019 (AECOM, 2019). PCE was detected at two of six locations at concentrations of 0.29 and 0.32 μ g/m³, which did not exceed the 0.46 μ g/m³ residential IASL. TCE was not detected in any of the indoor air samples. cDCE was detected in one indoor air sample at a concentration of 0.18 μ g/m³, which did not exceed the 8.3 μ g/m³, residential IASL. PCE, TCE, and cDCE were not detected in the indoor air sample collected from the room closest to vapor monitoring well SVM-1, which is where sub-slab vapor sample location H-SS01 is located. This suggests the 0.03 AF may be overly conservative for the Tool Issue Building and other buildings of similar construction.

5.1.2 Soil Gas Concentrations

Subsurface concentration data are the preferred LOE to evaluate long-term future VI risk to building occupants of existing and future buildings. Current indoor air concentration data will not necessarily predict long-term indoor air quality as a building changes over time. In addition, indoor air data are not available for potential future buildings (CalEPA, 2020). The soil gas samples collected during the current investigation are considered representative because they were collected from permanent vapor monitoring wells near potential contaminant sources (i.e., buildings where industrial activities took place) and represent steady-state conditions.

As discussed in Section 4.2.2, eight analytes (benzene, BDCM, chloroform, cDCE, 1,2-DCP, ethylbenzene, PCE, and TCE) were detected in shallow soil gas at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.03 AF. In comparison, only five of these analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) were detected at concentrations exceeding commercial/industrial and/or residential SVSLs derived using the 0.001 AF. The frequency and magnitude of detection of these analytes are described below.

- **Benzene.** Benzene concentrations detected in soil gas samples collected during the current investigation and the lateral extent of benzene concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-1 and 4-2, respectively. Benzene was detected in 8 of 56 shallow soil gas samples at a maximum concentration of 16 μg/m³ (vapor monitoring well VW65). The benzene concentrations detected in five of these samples exceeded the 3.2 μg/m³ residential SVSL derived using the 0.03 AF, and the benzene concentrations detected in one of these samples also exceeded the corresponding 14 μg/m³ commercial/industrial SVSL. In comparison, none of the benzene concentrations detected in shallow soil gas exceeded the 97 and 420 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.001 AF.
- BDCM. BDCM concentrations detected in soil gas samples collected during the current investigation and the lateral extent of BDCM concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-3 and 4-4, respectively. BDCM was detected in 3 of 56 shallow soil

gas samples at a maximum concentration of 43 $\mu g/m^3$ (vapor monitoring well VW30). The BDCM concentrations detected in all three of these samples exceeded the 2.5 $\mu g/m^3$ residential SVSL derived using the 0.03 AF, and the BDCM concentrations in two of these samples also exceeded the corresponding 11 $\mu g/m^3$ commercial/industrial SVSL. In comparison, none of the BDCM concentrations detected in shallow soil gas exceeded the 76 and 330 $\mu g/m^3$ residential and commercial/industrial SVSLs, respectively, derived using the 0.001 AF.

- Chloroform. Chloroform concentrations detected in soil gas samples collected in July and August 2021 and the lateral extent of chloroform concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-3 and 4-4, respectively. Chloroform was detected in 14 of 56 shallow soil gas samples at a maximum concentration of 1,500 μg/m³ (vapor monitoring well VW30). The chloroform concentrations detected in all 14 of these samples exceeded the 4.0 μg/m³ residential SVSL derived using the 0.03 AF, and the chloroform concentrations detected in 6 of these samples also exceeded the corresponding 18 μg/m³ commercial/ industrial SVSL. In comparison, only four of the chloroform concentrations detected in shallow soil gas exceeded the 120 μg/m³ residential derived using the 0.001 AF, and only one of these chloroform concentrations exceeded the corresponding 530 μg/m³ commercial/industrial SVSL.
- *cis*-1,2-DCE. *cis*-1,2-DCE concentrations detected in soil gas samples collected during the current investigation and the lateral extent of *cis*-1,2-DCE concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-5 and 4-6, respectively. *cis*-1,2-DCE was detected in 2 of 56 shallow soil gas samples at a maximum concentration of 53,000 μg/m³ (vapor monitoring well SVM-1). Only the maximum cDCE concentration detected exceeded the 280 and 1,200 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.03 AF. In comparison, the maximum *cis*-1,2-DCE concentration detected in shallow soil gas also exceeded the 8,300 and 35,000 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.001 AF.
- 1,2-DCP. 1,2-DCP was detected in 1 of 56 shallow soil gas samples at a concentration of 820 μg/m³ (vapor monitoring well SVM-1). The detected 1,2-DCP concentration exceeded the 25 and 110 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.03 AF. In comparison, the 1,2-DCP concentration detected in shallow soil gas exceeded the 760 residential SVSL derived using the 0.001 AF but did not exceed the corresponding 3,300 μg/m³ commercial/industrial SVSL.
- Ethylbenzene. Ethylbenzene concentrations detected in soil gas samples collected during the current investigation and the lateral extent of ethylbenzene concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-1 and 4-2, respectively. Ethylbenzene was detected in 17 of 56 shallow soil gas samples at a maximum concentration of 49 μg/m³ (vapor monitoring well VW37). Only the maximum detected ethylbenzene concentration in shallow soil gas exceeded the 37 μg/m³ residential SVSL derived using the 0.03 AF. None of the ethylbenzene concentrations detected in shallow soil gas exceeded the corresponding 14 μg/m³ commercial/industrial SVSL. In comparison, none of the ethylbenzene concentrations detected in shallow soil gas exceeded the 1,100 and 4,900 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.001 AF.
- PCE. PCE concentrations detected in soil gas samples collected during the current investigation and the lateral extent of PCE concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-5 and 4-6, respectively. PCE was detected in 53 of 56 shallow soil gas samples at a maximum concentration of 330,000 μg/m³ (vapor monitoring well SVM-1). The PCE concentrations detected in 47 of these samples exceeded the 15 μg/m³ residential SVSL derived using the 0.03 AF, and the PCE concentrations detected in 33 of these samples also exceeded the corresponding 67 μg/m³ commercial/industrial SVSL. In comparison, three of the PCE concentrations detected in shallow soil gas exceeded the 460 μg/m³ residential SVSL derived using the 0.001 AF, and only the maximum PCE concentration detected in shallow soil gas exceeded the corresponding 2,000 μg/m³ commercial/industrial SVSL.

• TCE. TCE concentrations detected in soil gas samples collected during the current investigation and the lateral extent of TCE concentrations in shallow soil gas exceeding SVSLs derived using 0.03 and 0.001 AFs are presented on Figures 4-5 and 4-6, respectively. TCE was detected in 6 of 56 shallow soil gas samples at a maximum concentration of 18,000 μg/m³ (vapor monitoring well SVM-1). The TCE concentrations detected in three of these samples exceeded the 16 μg/m³ residential SVSL derived using the 0.03 AF, and only the maximum concentration exceeded the corresponding 100 μg/m³ commercial/industrial SVSL. In comparison, only the maximum TCE concentration exceeded the 480 and 3,000 μg/m³ residential and commercial/industrial SVSLs, respectively, derived using the 0.001 AF.

The VOC concentrations detected in shallow soil gas described above indicate that SVSL exceedances are overwhelmingly attributed to SVSLs derived using the more conservative 0.03 AF. When SVSLs derived using the 0.001 AF are used, residential SVSL exceedances are limited to shallow soil gas samples from vapor monitoring wells VW17, VW18, VW30, VW61, VW64, SVM-1, and SVM-3, and commercial/industrial SVSL exceedances are limited to shallow soil gas samples collected from vapor monitoring wells VW30 and SVM-1. If the VOC concentrations detected in shallow soil gas were an order of magnitude higher than those detected at this Site, the extent of SVSL exceedances based on the 0.03 AF compared to the 0.001 AF would be much less pronounced. This indicates the potential need to take action across much of the Site is more heavily dependent on the AF used to derive SVSLs than the shallow soil gas concentrations detected. Therefore, careful consideration is needed when considering the applicability of an AF to this Site.

5.1.3 Temporal Variability

Contaminant plume migration and seasonal factors, including but not limited to, weather conditions, groundwater levels, soil temperature, and soil moisture, can cause significant temporal variability in soil gas concentration (CalEPA, 2020). Therefore, one of the current investigation objectives was to conduct soil gas sampling in summer 2021 to obtain summer soil gas data to compare to the fall/winter 2020/2021 soil gas data reported in the SCR Addendum (AECOM, 2021).

Table 5-1 presents the fall/winter 2020/2021 and summer 2021 maximum analyte concentrations detected in soil gas, locations and depths of the maximum detected concentrations, and frequency of analyte detections. Approximately one-third of the analytes detected had maximum concentrations that varied significantly (i.e., one order of magnitude difference or greater) between sampling events. These analytes are primarily petroleum hydrocarbons (TPH_q), petroleum hydrocarbon constituents (benzene, chlorobenzene, cyclohexane, ethylbenzene, heptane, hexane, propylene, toluene, and 1,2,4-trimethylbenzene), and gasoline oxygenates (ethanol and methyl tert-butyl ether [MTBE]). Other analytes with significant maximum concentration variances between sampling events include 2-hexanone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), PCE, and tetrahydrofuran. Except for PCE, it is not clear why the maximum concentrations of these analytes varied significantly from fall/winter 2020/2021 to summer 2021. The variance in the maximum detected PCE concentrations (1,200,000 µg/m³ in fall/winter versus 330,000 µg/m³ in summer at vapor monitoring well SVM-1) is most likely attributed to continued operation of the SVE system adjacent to the Tool Issue Building. The analytes with the greatest maximum concentration variances are cyclohexane (120,000 µg/m³ in fall/winter versus 34 µg/m³ in summer), heptane (16,000 μg/m³ in fall/winter versus 34 μg/m³ in summer), and TPHg (1,900,000 μg/m³ in fall/winter versus 7,800 μg/m³ in summer). Of the analytes with maximum concentrations that varied by an order of magnitude or greater, the higher concentration was detected in soil gas samples collected during fall/winter 2020/2021, except for MIBK and MTBE.

The maximum concentrations of chlorobenzene, heptane, and hexane detected during the fall/winter 2020/2021 sampling event exceeded the residential SVSLs derived using the 0.03 AF but the maximum concentrations of these analytes did not exceed the same residential SVSLs during the summer 2021 sampling event. The maximum TPHg concentration detected during the fall/winter 2020/2021 sampling event exceeded the residential and

commercial/industrial SVSLs derived using the 0.03 AF but the maximum TPHg concentration detected during the summer 2021 sampling event did not exceed either of these SVSLs. The maximum concentrations of cyclohexane, 2-hexanone, MEK, MIBK, MTBE, propylene, tetrahydrofuran, and 1,2,4-trimethylbenzene detected during both sampling events did not exceed their residential SVSLs derived using the 0.03 AF. Of the analytes with maximum concentrations that varied by an order of magnitude of greater, only benzene, ethylbenzene, toluene, and PCE were identified as COCs.

Thirteen analytes were detected in soil gas samples collected during the fall/winter 2020/2021 sampling event that were not detected during the summer 2021 sampling event. These analytes include *tert*-amyl methyl ether, chloromethane, 1,2-dibromoethane (DBE), dibromomethane, 1,4-dichlorobenzene, 1,2-dichloroethane, *trans*-1,2-dichloroethane, ethyl *tert*-butyl ether, styrene, and 1,1,1,2-tetrafluoroethane, 1,2,3-trichloropropane, 1,1,2-trichloro-1,2,2-trifluoroethane, and vinyl acetate. Four analytes were detected in soil gas samples collected during the summer 2021 sampling event that were not detected during the fall/winter 2020/2021 sampling event. These analytes include cumene, 1,4-dioxane, ethyl acetate, and propylbenzene. Of the 17 analytes detected during one of the two sampling events, only 1,2-DBE was detected in shallow soil gas at a concentration exceeding SVSLs. Detections of 1,2-DBE during the fall/winter 2020/2021 sampling event were infrequent (8 of 110 samples). Therefore, the variability in the analytes detected during one sampling event and not during the other sampling event is not considered significant as it relates to determining a Site-specific AF.

Tables 5-2 and 5-3 present COC concentrations detected in shallow soil gas during the fall/winter 2020/2021 and summer 2021 sampling events compared to residential and commercial/industrial SVSLs derived using the 0.03 and 0.001 AFs, respectively. The lateral extents of analytes in shallow soil gas during the fall/winter 2020/2021 and summer 2021 sampling events based on SVSLs derived using the 0.03 and 0.001 AFs are presented on Figure 5-1 (benzene, ethylbenzene, and naphthalene), Figure 5-2 (1,2-DBE, BDCM, and chloroform), and Figure 5-3 (PCE, TCE, and cDCE). The greatest temporal variability in lateral extent of analyte concentrations exceeding SVSLs was observed for benzene, ethylbenzene, and naphthalene (Figure 5-1).

During the fall/winter 2020/2021 sampling event, 11 analytes (benzene, BDCM, chloroform, 1,2-DBE, cDCE, 1,2-DCP, ethylbenzene, naphthalene, PCE, TCE, and TPH_g) were detected at concentrations exceeding residential SVSLs derived using the 0.03 AF compared to eight analytes (benzene, BDCM, chloroform, cDCE, 1,2-DCP, ethylbenzene, PCE, and TCE) during the summer 2021 sampling event. Residential SVSL exceedances for BDCM, 1,2-DBE, cDCE, 1,2-DCP, TCE, and TPH_g were limited to three or fewer locations each during both sampling events.

During the fall/winter 2020/2021 sampling event, 10 analytes (benzene, BDCM, chloroform, 1,2-DBE, cDCE, 1,2-DCP, naphthalene, PCE, TCE, and TPH_g) were detected at concentrations exceeding commercial/industrial SVSLs derived using the 0.03 AF compared to seven analytes (benzene, BDCM, chloroform, cDCE, 1,2-DCP, PCE, and TCE) during the summer 2021 sampling event. Commercial/industrial SVSL exceedances for BDCM, 1,2-DBE, cDCE, 1,2-DCP, naphthalene, TCE, and TPH_g were limited to three or fewer locations each during both sampling events.

During the fall/winter 2020/2021 sampling event, five analytes (chloroform, 1,2-DBE, cDCE, PCE, and TCE) were detected at concentrations exceeding residential SVSLs derived using the 0.001 AF compared to five analytes (chloroform, cDCE, 1,2-DCP, PCE, and TCE) during the summer 2021 sampling event. Residential SVSL exceedances for all analytes were limited to four or fewer locations each during both sampling events.

During the fall/winter 2020/2021 sampling event, three analytes (chloroform, PCE, and TCE) were detected at concentrations exceeding commercial/industrial SVSLs derived using the 0.001 AF compared to four analytes

(chloroform, cDCE, PCE, and TCE) during the summer 2021 sampling event. Commercial/industrial SVSL exceedances for all analytes were limited to two or fewer locations each during both sampling events.

Temporal variability was most evident in petroleum-related analytes. Most of these analytes were detected at concentrations below SVSLs during both sampling events, except benzene, ethylbenzene, and naphthalene, which were detected at concentrations exceeding SVSLs during one or both sampling events. In shallow soil gas, the greatest temporal variability for analytes detected at concentrations exceeding SVSLs during one or both sampling events was observed in analytes detected less frequently (i.e., 20 percent or less of the locations sampled). In shallow soil gas, temporal variability was less significant for the non-petroleum-related COCs, including PCE. PCE is the most prevalent COC detected above SVSLs in shallow soil gas and its lateral extent generally encompasses that of the other COCs.

5.2 Redevelopment/Future Building Design

Future redevelopment of the Site is anticipated to reduce building susceptibility to VI compared to the current scenario. Currently, almost the entire Site is covered by buildings or pavement. Buildings and pavement can have a capping effect that limits natural venting of subsurface VOCs to the ambient air. As part of redevelopment, the existing buildings will be demolished and the existing pavement will be removed. Exposing the soil should increase natural venting of subsurface VOCs thereby reducing VOC concentrations in soil vapor. Additionally, grading and other soil disturbance during construction may also increase natural venting of subsurface VOCs while these activities are taking place.

Future building design will also factor into the VI potential. In areas where new buildings will be constructed, the physical character of the subsurface may be altered through soil compaction to provide a more stable base for building foundations. Soil compaction reduces permeability, which will reduce vapor migration beneath buildings compared to surrounding areas with higher soil permeability. For buildings to be constructed with a slab foundation, a thicker, denser slab can reduce VI potential. To further reduce VI potential, buildings can be designed with a raised foundation (e.g., crawl space beneath building) or one with an unoccupied ground floor (e.g., vehicle parking).

Following redevelopment, the percentage of the Site covered by buildings and pavement is anticipated to be comparatively less than the current scenario consistent with City of Sacramento zoning requirements. These "uncapped" areas have the potential to promote natural venting of subsurface VOCs to outdoor air and decrease VOC concentrations in soil vapor over time. Additionally, studies have demonstrated vapor-phase exchange of PCE between soil and plants (Struckhoff and Burken, 2005); therefore, landscaped areas may also reduce VOCs in soil vapor through plant uptake of VOCs from the subsurface.

AECOM 6-1

6.0 Conclusions and Recommendations

Section 6.1 provides conclusions regarding the COCs identified for soil gas, sub-slab vapor and sewer gas. Section 6.2 provided conclusions regarding the extent of soil gas contamination. Section 6.3 provides conclusions for the vapor gas attenuation factor evaluation. Recommendations for the path forward are presented in Section 6.4

6.1 Chemicals of Concern

6.1.1 Soil Gas

Following evaluation of the fall/winter 2020/2021 sampling results from the previous investigation, chloroform, 1,2-DBE, cDCE, PCE, and TCE were identified as COCs in soil gas based on a 0.001 AF. When a more conservative 0.03 AF was applied, benzene, BDCM, 1,2-DCP, ethylbenzene, naphthalene, and toluene were also identified as COCs in soil gas (AECOM, 2021). Based on evaluation of the summer 2021 sampling results from the current investigation, chloroform, cDCE, PCE, and TCE continue to be identified as COCs in soil gas based on a 0.001 AF. When a more conservative 0.03 AF was applied, benzene, BDCM, and ethylbenzene also continue to be identified as COCs in soil gas. 1,2-DBE and naphthalene, which were previously identified as COCs in soil gas, were not detected in shallow soil gas during the summer 2021 sampling event. Additionally, the maximum toluene concentration detected in shallow soil gas during the summer 2021 sampling event was two orders of magnitude lower than was detected during the fall/winter 2020/2021 sampling event (92 µg/m³ in summer 2021 versus 9,700 µg/m³ in fall/winter 2020/2021). Therefore, 1,2-DBE, naphthalene, and toluene were not confirmed to be COCs in soil gas based on the summer 2021 sampling results.

6.1.2 Sub-Slab Vapor

The sub-slab vapor data obtained from the current investigation indicate that PCE was detected beneath the Tool Issue Building at a concentration exceeding the residential SVSL derived using a 0.001 AF. No VOCs were detected in sub-slab vapor at concentrations exceeding the commercial/industrial SVSL derived using a 0.001 AF. When a more conservative 0.03 AF was applied, PCE was detected in sub-slab vapor beneath the Garage Building, Shops Building, Hazardous Material Building, Tool Issue Building, and Salvage Building at concentrations exceeding the residential SVSL. The PCE concentrations detected in sub-slab vapor beneath the Shops Building, Hazardous Material Building, and Tool Issue Building also exceeded the commercial/industrial SVSL. Additionally, TCE was detected in sub-slab vapor beneath the Tool Issue Building at a concentration exceeding the residential SVSL. TCE is a degradation product of PCE and can form where PCE is present. Therefore, PCE and TCE are considered sub-slab vapor COCs for the existing buildings at the Site.

6.1.3 Sewer Gas

The sewer gas data obtained from the current investigation indicate that no VOCs were detected at concentrations exceeding the SLs derived using a 0.001 AF. When a more conservative 0.03 AF was applied, benzene was detected in sewer gas associated with the Garage Building and Salvage Building at concentrations above the residential SL. Additionally, chloroform was detected in sewer gas associated with the Salvage Building at a concentration above the residential SL. Both of these buildings were previously used for equipment repair or dismantling, and the presence of benzene and chloroform in sewer gas may be attributable to Site use. Therefore, benzene is considered a sewer gas COC for the Garage Building and benzene and chloroform are considered sewer gas COCs for the Salvage Building.

6.2 Extent of Soil Gas Contamination

The extent of soil gas contamination was greater based on fall/winter 2020/2021 sampling results when compared to the summer 2021 sampling results. The lateral extents of VOC concentrations in soil gas exceeding their respective

AECOM 6-2

residential and commercial/ industrial SVSLs based on fall/winter 2020/2021 and summer 2021 shallow soil gas data (i.e., from 4 to 5.5 feet bgs) are shown on Figures 5-1 through 5-3. The lateral extent of VOC concentrations in shallow soil gas exceeding the SVSLs derived using a 0.03 AF extends beneath approximately 9.2 acres based on fall/winter 2020/2021 data compared to 8.4 acres based on the summer 2021 data. In both cases, the lateral extent of VOC concentrations in shallow soil gas exceeding SVSLs extends across the western two-thirds of the North Corporation Yard and may extend beyond the property boundary to the north, west and south. The lateral extent of fall/winter 2020/2021 VOC concentrations in shallow soil gas exceeding the SVSLs derived using a 0.001 AF is limited to two localized areas: in the vicinity of vapor monitoring wells SVM-1 and VW14 at the north side of the Tool Issue Building and an area encompassing vapor monitoring wells VW19, VW24, and VW30, including the area beneath the western portion of the Garage Building. These two areas comprise approximately 0.65 acre. In comparison, the lateral extent of summer 2021 VOC concentrations in shallow soil gas exceeding the SVSLs derived using a 0.001 AF is limited to three localized areas: in the vicinity of vapor monitoring wells SVM-1, SVM-3, and VW14 at the north side of the Tool Issue Building; an area encompassing vapor monitoring wells VW30, VW61, and VW64 south of the Garage Building; and an area encompassing vapor monitoring wells VW17 and VW18 along the northern property boundary. These three areas comprise approximately 0.36 acre.

The maximum summer 2021 concentrations of six soil gas COCs (BDCM, chloroform, 1,2-DCP, PCE, TCE, and cDCE) were detected in shallow soil gas samples collected from 4 to 5.5 feet bgs. This is consistent with the results of the fall/winter sampling event, except the maximum BDCM concentration was previously detected at 14.5 feet bgs. The maximum summer 2021 concentrations of two soil gas COCs (benzene and ethylbenzene) were detected in samples collected from 14.5 feet bgs consistent with the results of the fall/winter 2020/2021 sampling event. The vertical extent of these COCs beyond 14.5 feet bgs is not known, except at deep vapor monitoring wells VW14 and VW15, which were installed to depths of 25.5 and 23.5 feet bgs, respectively. Three soil gas COCs (chloroform, PCE, and TCE) were detected in the summer 2021 soil gas sample collected from vapor monitoring well VW14. Only chloroform and PCE were detected at concentrations exceeding their respective SVSLs based on a 0.03 AF, and no COCs were detected at concentration exceeding its SVSL based on a 0.001 AF at this location. Only one soil gas COC (ethylbenzene) was detected in the duplicate summer 2021 soil gas samples collected from vapor monitoring well VW15. The detected ethylbenzene concentration did not exceed its SVSLs based on a 0.03 AF or a 0.001 AF at this location.

6.3 Attenuation Factor

Based on the evaluation of vapor AFs included in Section 5.0, it appears that the use of a 0.03 AF to establish Site-specific soil vapor cleanup goals would be overly conservative for the following reasons:

- The 0.03 AF was empirically-derived by USEPA using VOC data primarily from single-family residences
 constructed with basements in states outside California with relatively cold climates, which are conditions
 with higher VI potential than those found at the Site.
- The 0.03 AF is a generic AF developed by USEPA for preliminary screening of VOCs detected in soil gas to identify areas or buildings that may warrant further investigation of the VI pathway. The generic 0.03 AF was not specifically developed for determining cleanup levels. The USEPA approach to calculating cleanup levels includes use of alternative AFs based on site- or building-specific information. Draft supplemental VI guidance (CalEPA, 2020) also supports the use of USEPA's AFs (USEPA, 2015) for initial screening of buildings and the use of alternative approaches if supported by adequate technical and site information.
- USEPA identified the 0.03 AF for both soil gas and sub-slab vapor, which assumes no attenuation within the soil column. The calculated average attenuation factor for PCE, TCE, cDCE, and 1,2-DCP migrating from shallow soil to immediately beneath the Tool Issue Building foundation was 0.001 indicating attenuation within the soil column is occurring.

AECOM 6-3

• The VOC concentrations detected in shallow soil gas indicate that SVSL exceedances are overwhelmingly attributed to SVSLs derived using the more conservative 0.03 AF. If the VOC concentrations detected in shallow soil gas were an order of magnitude higher than those detected at this Site, the extent of SVSL exceedances based on the 0.03 AF compared to the 0.001 AF would be much less pronounced. This indicates the potential need to take action across much of the Site is more heavily dependent on the generic 0.03 AF used to derive SVSLs than the magnitude of the shallow soil gas concentrations detected.

- California VI guidance recommends using a default AF of 0.001 for existing commercial buildings with samples collected at the contamination source, along with the maximum soil gas concentration (DTSC, 2011). For future residential and commercial buildings, California VI guidance recommends using default AFs of 0.001 and 0.0005, respectively. The California VI guidance considers the default AFs to reflect reasonably protective assumptions for conditions in California for the contamination of indoor air due to VI.
- DTSC is conducting a VI AF study to derive a California-specific AF for VI calculations (DTSC, 2021), which
 appears to be an acknowledgement that USEPA's generic 0.03 AF may not be applicable to California. The
 preliminary findings suggest an AF closer to 0.001 than 0.03, which is consistent with other Californiaspecific VI AF studies such as that performed by Ettinger et al. (2018), which resulted in an empirical AF of
 0.002 for soil gas.

6.4 Recommendations

Based on the understanding of Site conditions following the summer 2021 soil gas, sub-slab vapor, and sewer gas sampling effort and regulatory SLs in effect at the time, recommended next steps include:

- Implementing a remedial action to address VOC concentrations in soil gas that could pose an unacceptable risk to human health should the vapors migrate into indoor.
- Developing soil vapor cleanup levels using a vapor AF of 0.001. An AF of 0.001 is equal to the 0.001 AF identified for preliminary screening evaluations of future residential buildings and two times as conservative as the 0.0005 AF identified for preliminary evaluations of future commercial buildings in California VI guidance (DTSC, 2011). An AF of 0.001 is also consistent with the preliminary findings of DTSC's California-specific AF study.
- Proceeding with planned demolition of the unoccupied Tool Issue Building and removal of subsurface utility line connections to better facilitate soil gas remediation in the building vicinity.

AECOM 7-1

7.0 References

Abbasi, R., D. Gallagher, and Bosan, W. 2021. "Technical Aspects of Vapor Intrusion Evaluations at California Sites." DTSC. Presented at the 30th Annual International Conference on Soil, Water, Energy, and Air. March 22.

AECOM Technical Services, Inc. (AECOM). 2018. Site Characterization Sampling and Analysis Plan, SMUD 59th Street Corporation Yard. Final. November.
2019. Site Characterization Report, SMUD 59th Street Corporation Yard. Final. December.
2020. Site Characterization Sampling and Analysis Plan Addendum, SMUD 59th Street Corporation Yard. Final. November.
2021. Site Characterization Report Addendum, SMUD 59th Street Corporation Yard. Draft. May.
Beacon Environmental (Beacon). 2021. Field Kit Guide for Passive Air Sampling.
Bosan, B., R. Abbasi, and D. Gallagher. 2020. "What the AF? New California Attenuation Factor for Vapor Intrusion at Redevelopment Sites." DTSC. Presented at the California Land Recycling Conference 2020. September
California Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.
2018. First Amendment to Corrective Action Consent Agreement, Docket HWCA P1-13/14-007. October 8
2020. HERO HHRA Note Number 3, DTSC-modified Screening Levels (DTSC-SLs). Human and Ecologica Risk Office. June.
2021. Vapor Intrusion Attenuation Factor Study. Site Mitigation & Restoration Program. DTSC Vapor Intrusion web page (www.dtsc.ca.gov/vapor-intrusion).
California Environmental Protection Agency (CalEPA). 2015. Advisory – Active Soil Gas Investigations. Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, and San Francisco Regional Water Quality Control Board. July.
2020. Supplemental Guidance: Screening and Evaluating Vapor Intrusion. Public Draft. California Department of Toxic Substances Control and California Water Resources Control Boards. February.

- California State Water Resources Control Board (SWRCB). 2019. *Environmental Screening Levels*. Revision 2. San Francisco Bay RWQCB. July.
- Ettinger, R.A., S. Luis, N. Weinberg, T. McAlary, G. Plantz, H.E. Dawson, J. Sickenger. 2018. *Empirical Analysis of Vapor Intrusion Attenuation Factors for Sub-Slab and Soil Vapor An Updated Assessment for California Sites*. Paper # VI22. Presented at the Vapor Intrusion, Remediation, and Site Closure Conference, Phoenix, Arizona. December 5-6.
- Johnson, P.C., and R.A. Ettinger. 1991. "Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings." *Environmental Science & Technology*, 25, pp. 1445-1452.

AECOM 7-2

Sacramento Municipal Utility District (SMUD). 1989. Environmental Assessment for the Hazardous Waste Facility, Sacramento Municipal Utility District Corporation Yard. January 23.

- Struckhoff, G.C., and J.G. Burken. 2005. "Vapor-Phase Exchange of Perchloroethene between Soil and Plants." *Environmental. Science & Technology*, 39 (6), pp. 1563-1568.
- United States Environmental Protection Agency (USEPA). 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. Office of Solid Waste and Emergency Response. Publication 9200.2-154. June.
- Vapor Pin Enterprises, Inc. 2021. Standard Operating Procedure, Installation and Extraction of the Vapor Pin® Sampling Device. Updated January 28.

TABLE 3-1. CURRENT INVESTIGATION SOIL GAS SAMPLE SUMMARY (Page 1 of 5)

								Laborator	/ Analyses
					Pavement	Depth Below		VOCs	Helium
			Sample	Depth	Thickness	Pavement	Laboratory	(USEPA	(ASTM
Location ID	Sampling Date	Field Sample ID	Type	(feet bgs)	(feet)	(feet)	Sample ID	TO-15)	D-1946)
VW14	7/15/2021	SG-VW14-02	N	26.33	0.33	26	2107361-13A	Х	
VW15	7/14/2021	SG-VW15-02	N	23.83	0.33	23.5	2107284-09A	Х	
VW15	7/14/2021	SG-VW15-03	FD	23.83	0.33	23.5	2107284-10A	Х	
VW16A	7/15/2021	SG-VW16A-02	N	5.83	0.33	5.5	2107361-06A	Х	
VW16B	7/12/2021	SG-VW16B-02	N	14.83	0.33	14.5	2107282-01A	Х	
VW17A	7/12/2021	SG-VW17A-02	N	5.75	0.25	5.5	2107282-02A	Х	
VW17A	8/16/2011	SG-VW17A-03	N	5.75	0.25	5.5	2108390-03A	Х	
VW17B	7/12/2021	SG-VW17B-03	N	14.75	0.25	14.5	2107282-03A	Х	
VW18A	7/15/2021	SG-VW18A-02	N	5.71	0.21	5.5	2107361-07A	Х	
VW18B	7/12/2021	SG-VW18B-02	N	14.71	0.21	14.5	2107282-04A	Х	
VW19A	7/13/2021	SG-VW19A-02	N	5.83	0.33	5.5	2107282-05A	Х	
VW19B	7/13/2021	SG-VW19B-02	N	14.83	0.33	14.5	2107282-06A	Х	
VW20A	7/14/2021	SG-VW20A-02	N	5.67	0.17	5.5	2107284-26A	Х	
VW20A	8/17/2021	SG-VW20A-03	N	5.67	0.17	5.5	2108390-13A	Х	
VW20B	7/15/2021	SG-VW20B-02	N	14.67	0.17	14.5	2107361-08A	Х	
VW21A	7/15/2021	SG-VW21A-03	N	5.83	0.33	5.5	2107361-10A	Х	
VW21A	8/17/2021	SG-VW21A-04	N	5.83	0.33	5.5	2108390-14A	Х	
VW21A	8/30/2021	SG-VW21A-05	N	5.83	0.33	5.5	2108676A-01A	Х	
VW21A	8/30/2021	SG-VW21A-06	FR	5.83	0.33	5.5	2108676B-02A	Х	
VW21B	7/15/2021	SG-VW21B-02	N	14.83	0.33	14.5	2107361-11A	Х	
VW22A	7/14/2021	SG-VW22A-02	N	5.79	0.29	5.5	2107284-24A	Х	
VW22B	7/14/2021	SG-VW22B-02	N	14.79	0.29	14.5	2107284-25A	Х	
VW23B	7/14/2021	SG-VW23B-02	N	14.83	0.33	14.5	2107284-23A	Х	
VW24A	7/15/2021	SG-VW24A-04	N	6.04	0.54	5.5	2107361-09A	Х	
VW24A	8/17/2021	SG-VW24A-05	N	6.04	0.54	5.5	2108390-15A	Х	
VW24B	7/14/2021	SG-VW24B-02	N	15.04	0.54	14.5	2107284-20A	Х	
VW25A	7/13/2021	SG-VW25A-02	N	5.75	0.25	5.5	2107282-11A	Х	
VW25B	7/13/2021	SG-VW25B-02	N	14.75	0.25	14.5	2107282-12A	Х	
VW26A	7/9/2021	SG-VW26A-02	N	6.25	0.75	5.5	2107241A-21A	Х	
VW26B	7/15/2021	SG-VW26B-02	N	15.25	0.75	14.5	2107361-05A	Χ	
VW27A	7/15/2021	SG-VW27A-02	N	5.92	0.42	5.5	2107361-02A	X	
VW27B	7/15/2021	SG-VW27B-02	N	14.92	0.42	14.5	2107361-03A	X	
VW27B	7/15/2021	SG-VW27B-03	FD	14.92	0.42	14.5	2107361-04A	Χ	

TABLE 3-1. CURRENT INVESTIGATION SOIL GAS SAMPLE SUMMARY (Page 2 of 5)

								Laborator	y Analyses
					Pavement	Depth Below		VOCs	Helium
			Sample	Depth	Thickness	Pavement	Laboratory	(USEPA	(ASTM
Location ID	Sampling Date	Field Sample ID	Type	(feet bgs)	(feet)	(feet)	Sample ID	TO-15)	D-1946)
VW28A	7/15/2021	SG-VW28A-02	Ň	5.83	0.33	5.5	2107361-12A	Χ	,
VW28B	7/15/2021	SG-VW28B-02	N	14.83	0.33	14.5	2107362A-12A	X	
VW29A	7/15/2021	SG-VW29A-02	N	5.83	0.33	5.5	2107362A-10A	Χ	
VW29A	8/17/2021	SG-VW29A-03	N	5.83	0.33	5.5	2108390-16A	Х	
VW29B	7/15/2021	SG-VW29B-02	N	14.83	0.33	14.5	2107362A-11A	Χ	
VW30A	7/15/2021	SG-VW30A-03	N	5.75	0.25	5.5	2107362A-04A	Χ	
VW30B	7/15/2021	SG-VW30B-03	N	14.75	0.25	14.5	2107362A-05A	Χ	
VW31A	7/9/2021	SG-VW31A-02	N	5.75	0.25	5.5	2107241A-18A	Χ	
VW31B	7/9/2021	SG-VW31B-02	N	14.75	0.25	14.5	2107241A-19A	Χ	
VW31B	7/9/2021	SG-VW31B-03	FD	14.75	0.25	14.5	2107241A-20A	Χ	
VW32A	7/12/2021	SG-VW32A-03	N	6.04	0.54	5.5	2107260A-02A	Χ	
VW32B	7/12/2021	SG-VW32B-02	N	15.04	0.54	14.5	2107260A-01A	Χ	
VW33A	7/14/2021	SG-VW33A-02	N	5.83	0.33	5.5	2107284-11A	Χ	
VW33B	7/14/2021	SG-VW33B-02	N	14.83	0.33	14.5	2107284-12A	Χ	
VW34A	7/14/2021	SG-VW34A-02	N	6.25	0.75	5.5	2107284-13A	Χ	
VW34A	7/14/2021	SG-VW34A-03	FD	6.25	0.75	5.5	2107284-14A	Х	
VW34B	7/14/2021	SG-VW34B-02	N	15.25	0.75	14.5	2107284-15A	Х	
VW35A	7/9/2021	SG-VW35A-02	N	6.17	0.67	5.5	2107241A-22A	Χ	
VW35A	8/16/2021	SG-VW35A-03	N	6.17	0.67	5.5	2108390-01A	Χ	
VW35B	7/9/2021	SG-VW35B-02	N	15.17	0.67	14.5	2107241A-23A	Χ	
VW36A	7/12/2021	SG-VW36A-02	N	5.79	0.29	5.5	2107260A-05A	Χ	
VW36B	7/12/2021	SG-VW36B-02	N	14.79	0.29	14.5	2107260A-03A	Χ	
VW36B	7/12/2021	SG-VW36B-03	FD	14.79	0.29	14.5	2107260A-04A	Χ	
VW37A	7/13/2021	SG-VW37A-02	N	6.17	0.67	5.5	2107260A-17A	X	
VW37B	7/13/2021	SG-VW37B-03	N	15.17	0.67	14.5	2107260A-15A	Χ	
VW37B	7/13/2021	SG-VW37B-04	FD	15.17	0.67	14.5	2107260A-16A	Χ	
VW38A	7/14/2021	SG-VW38A-02	N	5.88	0.38	5.5	2107284-07A	X	
VW38A	7/14/2021	SG-VW38A-03	FD	5.88	0.38	5.5	2107284-08A	Χ	
VW38B	7/14/2021	SG-VW38B-03	N	14.88	0.38	14.5	2107284-06A	Х	
VW39A	7/14/2021	SG-VW39A-02	N	6.08	0.58	5.5	2107284-05A	Х	
VW39B	7/14/2021	SG-VW39B-02	N	15.08	0.58	14.5	2107284-04A	Х	
VW40A	7/13/2021	SG-VW40A-02	N	5.75	0.25	5.5	2107260A-14A	X	
VW40B	7/13/2021	SG-VW40B-02	N	14.75	0.25	14.5	2107260A-13A	Х	

TABLE 3-1. CURRENT INVESTIGATION SOIL GAS SAMPLE SUMMARY (Page 3 of 5)

								Laborator	y Analyses
					Pavement	Depth Below		VOCs	Helium
			Sample	Depth	Thickness	Pavement	Laboratory	(USEPA	(ASTM
Location ID	Sampling Date	Field Sample ID	Туре	(feet bgs)	(feet)	(feet)	Sample ID	TO-15)	D-1946)
VW41A	7/13/2021	SG-VW41A-03	N	6.13	0.63	5.5	2107260A-19A	X	
VW41B	7/13/2021	SG-VW41B-02	N	15.13	0.63	14.5	2107260A-18A	X	
VW42A	7/13/2021	SG-VW42A-03	N	6.17	0.67	5.5	2107260A-21A	X	
VW42A	7/13/2021	SG-VW42A-04	FD	6.17	0.67	5.5	2107260A-22A	Х	
VW42B	7/13/2021	SG-VW42B-02	N	15.17	0.67	14.5	2107260A-20A	X	
VW43A	7/8/2021	SG-VW43A-02	N	5.75	0.25	5.5	2107241A-01A	Х	Х
	17072021		.,	0.70	0.20	0.0	2107241B-01A		,
VW43B	7/8/2021	SG-VW43B-02	N	14.75	0.25	14.5	2107241A-02A	Х	Х
							2107241B-02A		
VW44A	7/8/2021	SG-VW44A-02	N	5.83	0.33	5.5	2107241A-07A	X	
VW44A	8/16/2021	SG-VW44A-03	N	5.83	0.33	5.5	2108390-02A	Х	
VW44B	7/8/2021	SG-VW44B-02	N	14.83	0.33	14.5	2107241A-08A	Х	
VW45A	7/8/2021	SG-VW45A-03	N	6.17	0.67	5.5	2107241A-03A	X	Х
V VV45A	770/2021	3G-VVV43A-03	14	0.17	0.07	5.5	2107241B-03A	^	^
VW45B	7/8/2021	SG-VW45B-02	N	15.17	0.67	14.5	2107241A-04A	Х	Х
V VV43D	770/2021	3G-VVV43D-02	IN	15.17	0.07	14.5	2107241B-04A	^	^
VW46A	7/8/2021	SG-VW46A-02	Ν	6.25	0.75	5.5	2107241A-05A	Х	Х
V VV40A	1/0/2021	3G-VVV40A-02	IN	0.25	0.75	5.5	2107241B-05A	^	^
VW46B	7/8/2021	SG-VW46B-02	N	15.25	0.75	14.5	2107241A-06A	Х	Х
V VV40D	1/0/2021	3G-VVV40D-UZ	IN	15.25	0.75	14.5	2107241B-06A		^
VW47A	7/8/2021	SG-VW47A-02	N	6.17	0.67	5.5	2107241A-09A	X	
VW47A	7/8/2021	SG-VW47A-03	FD	6.17	0.67	5.5	2107241A-10A	Х	
VW47B	7/8/2021	SG-VW47B-02	N	15.17	0.67	14.5	2107241A-11A	Х	
VW48A	7/9/2021	SG-VW48A-03	N	6.25	0.75	5.5	2107241A-12A	Х	
VW48B	7/9/2021	SG-VW48B-02	N	15.25	0.75	14.5	2107241A-13A	Х	
VW49A	7/9/2021	SG-VW49A-03	N	6.25	0.75	5.5	2107241A-14A	Х	
VW49B	7/9/2021	SG-VW49B-02	N	15.25	0.75	14.5	2107241A-15A	X	
VW50A	7/9/2021	SG-VW50A-03	N	6.17	0.67	5.5	2107241A-16A	Х	
VW50B	7/9/2021	SG-VW50B-02	N	15.17	0.67	14.5	2107241A-17A	Х	
VW51A	7/12/2021	SG-VW51A-02	N	5.83	0.33	5.5	2107260A-07A	X	
VW51B	7/12/2021	SG-VW51B-02	N	14.83	0.33	14.5	2107260A-06A	Х	
VW52A	7/13/2021	SG-VW52A-02	N	5.83	0.33	5.5	2107282-07A	Х	
VW52B	7/13/2021	SG-VW52B-02	N	14.83	0.33	14.5	2107282-08A	Х	

TABLE 3-1. CURRENT INVESTIGATION SOIL GAS SAMPLE SUMMARY (Page 4 of 5)

								Laborator	y Analyses
					Pavement	Depth Below		VOCs	Helium
			Sample	Depth	Thickness	Pavement	Laboratory	(USEPA	(ASTM
Location ID	Sampling Date	Field Sample ID	Type	(feet bgs)	(feet)	(feet)	Sample ID	TO-15)	D-1946)
VW53A	7/13/2021	SG-VW53A-03	Ň	5.75	0.25	5.5	2107282-09A	Χ	
VW53B	7/13/2021	SG-VW53B-02	N	14.75	0.25	14.5	2107282-10A	Х	
VW54B	7/14/2021	SG-VW54B-02	N	14.75	0.25	14.5	2107284-19A	Х	
VW55A	7/14/2021	SG-VW55A-02	N	5.92	0.42	5.5	2107361-01A	Х	
VW55A	8/17/2021	SG-VW55A-03	N	5.92	0.42	5.5	2108390-12A	Х	
VW55B	7/14/2021	SG-VW55B-01	N	14.92	0.42	14.5	2107284-16A	Х	
VW56A	7/14/2021	SG-VW56A-02	N	6.17	0.67	5.5	2107284-03A	Х	
VW56B	7/14/2021	SG-VW56B-02	N	15.17	0.67	14.5	2107284-02A	Х	
VW57A	7/14/2021	SG-VW57A-02	N	6.08	0.58	5.5	2107284-01A	X	
VW57B	7/13/2021	SG-VW57B-04	N	15.08	0.58	14.5	2107260A-23A	Х	
VW57B	7/13/2021	SG-VW57B-05	FD	15.08	0.58	14.5	2107260A-24A	X	
VW58A	7/14/2021	SG-VW58A-01	N	5.92	0.42	5.5	2107284-21A	X	
VW58A	8/16/2021	SG-VW58A-02	N	5.92	0.42	5.5	2108390-04A	X	
VW58B	7/14/2021	SG-VW58B-01	N	14.92	0.42	14.5	2107284-22A	X	
VW58B	8/16/2021	SG-VW58B-02	N	14.92	0.42	14.5	2108390-05A	X	
VW59A	7/15/2021	SG-VW59A-01	N	5.92	0.42	5.5	2107361-15A	X	
VW59A	8/17/2021	SG-VW59A-02	N	5.92	0.42	5.5	2108390-18A	X	
VW59B	7/15/2021	SG-VW59B-01	N	14.92	0.42	14.5	2107361-14A	X	
VW59B	8/17/2021	SG-VW59B-02	N	14.92	0.42	14.5	2108390-19A	X	
VW60A	7/14/2021	SG-VW60A-01	N	5.75	0.25	5.5	2107284-17A	X	
VW60A	8/16/2021	SG-VW60A-02	N	5.75	0.25	5.5	2108390-07A	X	
VW60B	7/14/2021	SG-VW60B-01	N	14.75	0.25	14.5	2107284-18A	X	
VW60B	8/16/2021	SG-VW60B-02	N	14.75	0.25	14.5	2108390-06A	X	
VW61A	7/15/2021	SG-VW61A-01	N	5.75	0.25	5.5	2107362A-01A	X	
VW61A	8/16/2021	SG-VW61A-02	N	5.75	0.25	5.5	2108390-08A	Х	
VW61B	7/15/2021	SG-VW61B-01	N	14.75	0.25	14.5	2107362A-02A	Х	
VW62	7/15/2021	SG-VW62-01	N	25.75	0.25	25.5	2107362A-03A	Х	
VW63A	7/15/2021	SG-VW63A-01	N	5.75	0.25	5.5	2107362A-06A	Х	
VW63A	8/16/2021	SG-VW63A-02	N	5.75	0.25	5.5	2108390-09A	Х	
VW63B	7/15/2021	SG-VW63B-01	N	14.75	0.25	14.5	2107362A-07A	Х	
VW63B	8/16/2021	SG-VW63B-02	N	14.75	0.25	14.5	2108390-10A	Х	
VW63B	8/16/2021	SG-VW63B-03	FD	14.75	0.25	14.5	2108390-11A	Х	
VW64A	7/15/2021	SG-VW64A-01	N	5.75	0.25	5.5	2107362A-08A	Х	

TABLE 3-1. CURRENT INVESTIGATION SOIL GAS SAMPLE SUMMARY (Page 5 of 5)

								Laboratory	/ Analyses
					Pavement	Depth Below		VOCs	Helium
			Sample	Depth	Thickness	Pavement	Laboratory	(USEPA	(ASTM
Location ID	Sampling Date	Field Sample ID	Type	(feet bgs)	(feet)	(feet)	Sample ID	TO-15)	D-1946)
VW64A	8/17/2021	SG-VW64A-02	N	5.75	0.25	5.5	2108390-17A	Χ	
VW64B	7/15/2021	SG-VW64B-01	N	14.75	0.25	14.5	2107362A-09A	Χ	
VW65A	7/30/2021	SG-VW65A-01	N	6.00	0.5	5.5	2107684-07A	Х	
VW65B	7/30/2021	SG-VW65B-01	N	15.00	0.5	14.5	2107684-08A	Х	
VW66A	7/30/2021	SG-VW66A-01	N	5.83	0.33	5.5	2107684-09A	Х	
VW66B	7/30/2021	SG-VW66B-01	N	14.83	0.33	14.5	2107684-10A	X	
VW66B	7/30/2021	SG-VW66B-02	FD	14.83	0.33	14.5	2107684-11A	X	
SVM-1A	7/30/2021	SG-SVM1A-01	N	4.5	0.5	4	2107684-01A	X	
SVM-1B	7/30/2021	SG-SVM1B-01	N	14.5	0.5	14	2107684-02A	X	
SVM-2A	7/29/2021	SG-SVM2A-01	N	5.42	0.42	5	2107684-03A	X	
SVM-2B	7/29/2021	SG-SVM2B-01	N	14.42	0.42	14	2107684-04A	Χ	
SVM-3A	7/29/2021	SG-SVM3A-01	N	4.42	0.42	4	2107684-05A	Χ	
SVM-3B	7/29/2021	SG-SVM3B-01	N	14.42	0.42	14	2107684-06A	Χ	

Samples were collected using 1-liter passivated stainless steel canisters and analyzed by Eurofins Air Toxics of Folsom, California.

ASTM = ASTM International

bgs = below ground surface

FD = field duplicate sample

FR = field replicate sample

ID = identification

N = normal sample

TO = Toxic Organics

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

TABLE 3-2. CURRENT INVESTIGATION SUB-SLAB VAPOR SAMPLE SUMMARY (Page 1 of 1)

						Laboratory Analyses
				Sample		VOCs
Location	Location ID	Sampling Date	Field Sample ID	Type	Laboratory Sample ID	(USEPA TO-15)
Garage Building	F-SS01	7/15/2021	SSV-F-SS01-01	N	2107362B-19A	X
Garage Building	F-SS01	8/17/2021	SSV-F-SS01-02	N	2108390-20A	X
Garage Building	F-SS01	8/17/2021	SSV-F-SS01-03	FD	2108390-21A	X
Garage Building	F-SS02	7/15/2021	SSV-F-SS02-01	N	2107362B-18A	X
Garage Building	F-SS02	8/17/2021	SSV-F-SS02-02	N	2108390-22A	X
Shops Building	G-SS01	7/15/2021	SSV-G-SS01-01	N	2107362B-16A	X
Shops Building	G-SS01	8/17/2021	SSV-G-SS01-02	N	2108390-23A	X
Shops Building	G-SS02	7/15/2021	SSV-G-SS02-01	N	2107362B-17A	X
Shops Building	G-SS02	8/17/2021	SSV-G-SS02-02	N	2108390-24A	X
Tool Issue Building	H-SS01	7/15/2021	SSV-H-SS01-01	N	2107362B-14A	X
HazMat Building	HMB-SS01	7/15/2021	SSV-HMB-SS01-01	N	2107362B-15A	X
HazMat Building	HMB-SS01	8/17/2021	SSV-HMB-SS01-02	N	2108390-25A	X
Salvage Building	J-SS01	7/15/2021	SSV-J-SS01-01	N	2107362B-13A	X
Salvage Building	J-SS01	8/17/2021	SSV-J-SS01-02	N	2108390-26A	X

Samples were collected using 1-liter passivated stainless steel canisters and analyzed by Eurofins Air Toxics of Folsom, California.

FD = field duplicate sample

HazMat = Hazardous Material

ID = identification

N = normal sample

TO = Toxic Organics

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

TABLE 3-3. CURRENT INVESTIGATION SEWER GAS SAMPLE SUMMARY (Page 1 of 1)

	Sampli	ng Date				Laboratory Analyses
				Sample	Laboratory	VOCs
Location	Begin	End	Field Sample ID	Туре	Sample ID	(USEPA TO-17)
Garage Building Interior Sewer Cleanout	7/8/2021	7/15/2021	F-SEW-01P	N	0005847-02	X
Tool Issue Building Exterior Sewer Cleanout	7/8/2021	7/15/2021	H-SEW-01P	N	0005847-03	X
Tool Issue Building Exterior Sewer Cleanout	7/8/2021	7/15/2021	H-SEW-02P	FD	0005847-04	X
Tool Issue Building Interior Sewer Cleanout	7/8/2021	7/15/2021	H-SEW-03P	N	0005847-06	Х
Salvage Building Exterior Sewer Cleanout	7/8/2021	7/15/2021	J-SEW-01P	N	0005847-05	Х
NA	NA	NA	TB-01	TB	0005847-01	X

Samples were collected using passive samplers provided and analyzed by Beacon Environmental of Forest Hill, Maryland.

FD = field duplicate sample

ID = identification

N = normal sample

NA = not applicable

TB = trip blank

TO = Toxic Organics

USEPA = United States Environmental Protection Agency

VOC = volatile organic compound

TABLE 4-1. CURRENT INVESTIGATION MAXIMUM ANALYTE CONCENTRATIONS DETECTED IN SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR)

(Page 1 of 1)

									No. Samples			No. Samples	
							No. Locations		Exceeding	No. Locations	Commercial/	Exceeding	No. Locations
	Maximum	Sample ID	Location ID	Sampling Date	Sample	No. Detections/	with Detections/	Residential	Goal/	Exceeding Goal/	Industrial	Goal/	Exceeding Goal/
	Concentration	of Maximum	of Maximum	of Maximum	Depth	Total No.	Total No.	SVSL ^(a)	Total No.	Total No.	SVSL ^(a)	Total No.	Total No.
Analyte	(μg/m ³)	Concentration	Concentration	Concentration	(feet)	Samples	Locations Sampled	(μg/m³)	Samples	Locations Sampled	(μg/m ³)	Samples	Locations Sampled
Acetone	260	SG-VW48B-02	VW48	7/9/2021	14.5	51/117	37/55	1,100,000	0/117	0/55	4,700,000	0/117	0/55
Benzene	22 J-	SG-VW32B-02	VW32	7/12/2021	14.5	12/117	10/55	3.2	9/117	8/55	14	2/117	2/55
Bromodichloromethane (BDCM)	43	SG-VW30A-03	VW30	7/15/2021	5.5	7/117	4/55	2.5	7/117	4/55	11	4/117	4/55
tert-Butyl Alcohol (TBA)	38 J	SG-VW47A-02	VW47	7/8/2021	5.5	5/117	5/55	NE	NA	NA	NE	NA	NA
Carbon Disulfide	150	SG-VW46B-02	VW46	7/8/2021	14.5	12/117	11/55	24.000	0/117	0/55	100.000	0/117	0/55
Carbon Tetrachloride	9.1 J-	SG-VW17A-03	VW17	8/16/2021	14.5	1/117	1/55	16	0/117	0/55	67	0/117	0/55
Chlorobenzene (Benzyl Chloride)	340 J-	SG-VW47B-02	VW47	7/8/2021	14.5	1/117	1/55	1,700	0/117	0/55	7,300	0/117	0/55
Chloroform	1,500	SG-VW30A-03	VW30	7/15/2021	5.5	40/117	22/55	4.0	40/117	22/55	18	24/117	17/55
Cumene (Isopropylbenzene)	14	SG-VW49B-02	VW49	7/9/2021	14.5	2/117	1/55	14,000	0/117	0/55	60,000	0/117	0/55
Cyclohexane	34	SG-VW37A-02	VW37	7/13/2021	5.5	12/117	11/55	210,000	0/117	0/55	870,000	0/117	0/55
Dichlorodifluoromethane (Freon 12)	67 J-	SG-VW19B-02	VW19	7/13/2021	14.5	31/117	19/55	3,300	0/117	0/55	15,000	0/117	0/55
cis -1,2-Dichloroethene (cDCE)	53,000	SG-SVM1A-01	SVM-1	7/30/2021	4	3/117	2/55	280	1/117	1/55	1,200	1/117	1/55
1,2-Dichloropropane	820	SG-SVM1A-01	SVM-1	7/30/2021	4	1/117	1/55	25	1/117	1/55	110	1/117	1/55
1,4-Dioxane	80	SG-VW46B-02	VW46	7/8/2021	14.5	1/117	1/55	19	1/117	1/55	83	0/117	0/55
Ethanol	62	SG-VW16B-02	VW16	7/12/2021	14.5	20/117	17/55	NE	NA	NA	NE	NA	NA
Ethyl Acetate	41	SG-VW26B-02	VW26	7/15/2021	14.5	1/117	1/55	2,400	0/117	0/55	10,000	0/117	0/55
Ethylbenzene	65 J-	SG-VW32B-02	VW32	7/12/2021	14.5	21/117	19/55	37	2/117	2/55	160	0/117	0/55
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	80 J-	SG-VW32B-02	VW32	7/12/2021	14.5	18/117	16/55	NE	NA	NA	NE	NA	NA
n-Heptane	34	SG-VW37A-02	VW37	7/13/2021	5.5	5/117	4/55	14,000	0/117	0/55	60,000	0/117	0/55
Hexane	4,300 J	SG-VW35A-03	VW35	8/16/2021	5.5	37/117	24/55	24,000	0/117	0/55	100,000	0/117	0/55
2-Hexanone	0.72 J-	SG-VW21A-05	VW21	8/30/2021	5.5	1/117	1/55	1,000	0/117	0/55	4,300	0/117	0/55
Isooctane (2,2,4-Trimethylpentane)	100	SG-VW65A-01	VW65	7/30/2021	5.5	8/117	5/55	NE	NA	NA	NE	NA	NA
Isopropyl Alcohol (2-Propanol)	92	SG-VW43A-02	VW43	7/8/2021	5.5	48/117	35/55	7,000	0/117	0/55	29,000	0/117	0/55
Methyl Ethyl Ketone (2-Butanone)	26	SG-VW53A-03	VW53	7/13/2021	5.5	3/117	2/55	170,000	0/117	0/55	730,000	0/117	0/55
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	790 J-	SG-VW20B-02	VW20	7/15/2021	14.5	5/117	5/55	100,000	0/117	0/55	430,000	0/117	0/55
Methyl tert-Butyl Ether (MTBE)	38	SG-VW37A-02	VW37	7/13/2021	5.5	1/117	1/55	370	0/117	0/55	1,600	0/117	0/55
Naphthalene	11 J-	SG-VW56B-02	VW56	7/14/2021	14.5	1/117	1/55	2.8	0/117	1/55	12	0/117	0/55
Propylbenzene	17 J-	SG-VW32B-02	VW32	7/12/2021	14.5	5/117	4/55	33,000	0/117	0/55	150,000	0/117	0/55
Propylene	69	SG-VW48B-02	VW48	7/9/2021	14.5	7/117	7/55	100,000	0/117	0/55	430,000	0/117	0/55
Tetrachloroethene (PCE)	330,000	SG-SVM1A-01	SVM-1	7/30/2021	4	108/117	53/55	15	95/117	49/55	67	63/117	35/55
Tetrahydrofuran	9.6 J	SG-VW15-02	VW15	7/14/2021	23.5	3/117	3/55	70,000	0/117	0/55	290,000	0/117	0/55
Toluene	110	SG-VW26B-02	VW26	7/15/2021	14.5	39/117	29/55	10,000	0/117	0/55	43,000	0/117	0/55
1,1,1-Trichloroethane	6.0 J-	SG-VW21A-05	VW21	8/30/2021	5.5	2/117	1/55	33,000	0/117	0/55	150,000	0/117	0/55
Trichloroethene (TCE)	18,000	SG-SVM1A-01	SVM-1	7/30/2021	4	13/117	9/55	16	5/117	2/55	100	1/117	1/55
Trichlorofluoromethane (Freon 11)	14 J-	SG-VW19B-02 SG-VW32B-02	VW19 VW32	7/13/2021 7/12/2021	14.5 14.5	6/117	3/55 17/55	43,000	0/117	0/55 0/55	180,000	0/117	0/55
1,2,4-Trimethylbenzene	66 J-					19/117		2,100	0/117		8,700	0/117	0/55
1,3,5-Trimethylbenzene	29 J-	SG-VW32B-02	VW32	7/12/2021 7/12/2021	14.5	6/117	5/55 24/55	2,100 3,300	0/117	0/55 0/55	8,700	0/117	0/55 0/55
m- & p-Xylenes	200 J- 64 J-	SG-VW32B-02	VW32		14.5 14.5	30/117 24/117	24/55	3,300	0/117 0/117	0/55	15,000	0/117 0/117	0/55
o-Xylene		SG-VW32B-02	VW32	7/12/2021				-,			15,000		-
TPH - Gasoline	7,800	SG-VW35A-03	VW35	8/16/2021	5.5	24/117	19/55	20,000 ^(b)	0/117	0/55	83,000 ^(b)	0/117	0/55

Bold indicates analyte exceeds one or more SVSLs.

Sample depths are referenced to the top of soil (bottom of pavement).

 μ g/m³ = micrograms per cubic meter

CalEPA = California Environmental Protection Agency

DTSC = Department of Toxic Substances Control

ESL = Environmental Screening Level

ID = identification

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

J = estimated concentration

J- = estimated concentration; potential low bias

NA = not applicable

NE = not established

No. = number

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Goal Compliance:

^(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC, 2020) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

⁽b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air ESLs (SWRCB, 2019) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

TABLE 4-2. CURRENT INVESTIGATION MAXIMUM ANALYTE CONCENTRATIONS DETECTED IN SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 1 of 1)

									No. Samples			No. Samples	
							No. Locations		Exceeding	No. Locations	Commercial/	Exceeding	No. Locations
	Maximum	Sample ID	Location ID	Sampling Date	Sample	No. Detections/	with Detections/	Residential	Goal/	Exceeding Goal/	Industrial	Goal/	Exceeding Goal/
	Concentration	of Maximum	of Maximum	of Maximum	Depth	Total No.	Total No.	SVSL ^(a)	Total No.	Total No.	SVSL ^(a)	Total No.	Total No.
Analyte	(μg/m³)	Concentration	Concentration	Concentration	(feet)	Samples	Locations Sampled	(μg/m ³)	Samples	Locations Sampled	(μg/m ³)	Samples	Locations Sampled
Acetone	260	SG-VW48B-02	VW48	7/9/2021	14.5	51/117	37/55	32,000,000	0/117	0/55	140,000,000	0/117	0/55
Benzene	22 J-	SG-VW32B-02	VW32	7/12/2021	14.5	12/117	10/55	97	0/117	0/55	420	0/117	0/55
Bromodichloromethane (BDCM)	43	SG-VW30A-03	VW30	7/15/2021	5.5	7/117	4/55	76	0/117	0/55	330	0/117	0/55
tert-Butyl Alcohol (TBA)	38 J	SG-VW47A-02	VW47	7/8/2021	5.5	5/117	5/55	NE	NA	NA	NE	NA	NA
Carbon Disulfide	150	SG-VW46B-02	VW46	7/8/2021	14.5	12/117	11/55	730,000	0/117	0/55	3,100,000	0/117	0/55
Carbon Tetrachloride	9.1 J-	SG-VW17A-03	VW17	8/16/2021	14.5	1/117	1/55	470	0/117	0/55	2,000	0/117	0/55
Chlorobenzene (Benzyl Chloride)	340 J-	SG-VW47B-02	VW47	7/8/2021	14.5	1/117	1/55	52,000	0/117	0/55	220,000	0/117	0/55
Chloroform	1,500	SG-VW30A-03	VW30	7/15/2021	5.5	40/117	22/55	120	12/117	7/55	530	3/117	2/55
Cumene (Isopropylbenzene)	14	SG-VW49B-02	VW49	7/9/2021	14.5	2/117	1/55	420,000	0/117	0/55	1,800,000	0/117	0/55
Cyclohexane	34	SG-VW37A-02	VW37	7/13/2021	5.5	12/117	11/55	6,300,000	0/117	0/55	26,000,000	0/117	0/55
Dichlorodifluoromethane (Freon 12)	67 J-	SG-VW19B-02	VW19	7/13/2021	14.5	31/117	19/55	100,000	0/117	0/55	440,000	0/117	0/55
cis -1,2-Dichloroethene (cDCE)	53,000	SG-SVM1A-01	SVM-1	7/30/2021	4	3/117	2/55	8,300	1/117	1/55	35,000	1/117	1/55
1,2-Dichloropropane	820	SG-SVM1A-01	SVM-1	7/30/2021	4	1/117	1/55	760	1/117	1/55	3,300	1/117	1/55
1.4-Dioxane	80	SG-VW46B-02	VW46	7/8/2021	14.5	1/117	1/55	560	0/117	0/55	2,500	0/117	0/55
Ethanol	62	SG-VW16B-02	VW16	7/12/2021	14.5	20/117	17/55	NE	NA	NA	NE	NA	NA
Ethyl Acetate	41	SG-VW26B-02	VW26	7/15/2021	14.5	1/117	1/55	73.000	0/117	0/55	310.000	0/117	0/55
Ethylbenzene	65 J-	SG-VW32B-02	VW32	7/12/2021	14.5	21/117	19/55	1,100	0/117	0/55	4,900	0/117	0/55
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	80 J-	SG-VW32B-02	VW32	7/12/2021	14.5	18/117	16/55	NE NE	NA	NA	NE	NA	NA
n-Heptane	34	SG-VW37A-02	VW37	7/13/2021	5.5	5/117	4/55	420,000	0/117	0/55	1,800,000	0/117	0/55
Hexane	4,300 J	SG-VW35A-03	VW35	8/16/2021	5.5	37/117	24/55	730,000	0/117	0/55	3,100,000	0/117	0/55
2-Hexanone	0.72 J-	SG-VW21A-05	VW21	8/30/2021	5.5	1/117	1/55	31,000	0/117	0/55	130,000	0/117	0/55
Isooctane (2,2,4-Trimethylpentane)	100	SG-VW65A-01	VW65	7/30/2021	5.5	8/117	5/55	NE	NA NA	NA	NE	NA	NA NA
Isopropyl Alcohol (2-Propanol)	92	SG-VW43A-02	VW43	7/8/2021	5.5	48/117	35/55	210,000	0/117	0/55	880,000	0/117	0/55
Methyl Ethyl Ketone (2-Butanone)	26	SG-VW53A-03	VW53	7/13/2021	5.5	3/117	2/55	5,200,000	0/117	0/55	22,000,000	0/117	0/55
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	790 J-	SG-VW20B-02	VW20	7/15/2021	14.5	5/117	5/55	3,100,000	0/117	0/55	13,000,000	0/117	0/55
Methyl <i>tert</i> -Butyl Ether (MTBE)	38	SG-VW37A-02	VW37	7/13/2021	5.5	1/117	1/55	11,000	0/117	0/55	47,000	0/117	0/55
Naphthalene	11 J-	SG-VW56B-02	VW56	7/14/2021	14.5	1/117	1/55	83	0/117	0/55	360	0/117	0/55
Propylbenzene	17 J-	SG-VW32B-02	VW32	7/12/2021	14.5	5/117	4/55	1,000,000	0/117	0/55	4,400,000	0/117	0/55
Propylene	69	SG-VW48B-02	VW48	7/9/2021	14.5	7/117	7/55	3,100,000	0/117	0/55	13,000,000	0/117	0/55
Tetrachloroethene (PCE)	330,000	SG-SVM1A-01	SVM-1	7/30/2021	4	108/117	53/55	460	3/117	3/55	2,000	1/117	1/55
Tetrahydrofuran	9.6 J	SG-VW15-02	VW15	7/14/2021	23.5	3/117	3/55	2,100,000	0/117	0/55	8,800,000	0/117	0/55
Toluene	110	SG-VW26B-02	VW26	7/15/2021	14.5	39/117	29/55	310,000	0/117	0/55	1,300,000	0/117	0/55
1,1,1-Trichloroethane	6.0 J-	SG-VW21A-05	VW21	8/30/2021	5.5	2/117	1/55	1,000,000	0/117	0/55	4,400,000	0/117	0/55
Trichloroethene (TCE)	18,000	SG-SVM1A-01	SVM-1	7/30/2021	4	13/117	9/55	480	1/117	1/55	3,000	1/117	1/55
Trichlorofluoromethane (Freon 11)	14 J-	SG-VW19B-02	VW19	7/13/2021	14.5	6/117	3/55	1.300.000	0/117	0/55	5,300,000	0/117	0/55
1,2,4-Trimethylbenzene	66 J-	SG-VW19B-02 SG-VW32B-02	VW32	7/12/2021	14.5	19/117	17/55	63,000	0/117	0/55	260,000	0/117	0/55
1,3,5-Trimethylbenzene	29 J-	SG-VW32B-02	VW32	7/12/2021	14.5	6/117	5/55	63,000	0/117	0/55	260,000	0/117	0/55
m- & p-Xylenes	200 J-	SG-VW32B-02 SG-VW32B-02	VW32	7/12/2021	14.5	30/117	24/55	100,000	0/117	0/55	440,000	0/117	0/55
o-Xylene	64 J-	SG-VW32B-02	VW32	7/12/2021	14.5	24/117	20/55	100,000	0/117	0/55	440,000	0/117	0/55
TPH - Gasoline	7,800	SG-VW35A-03	VW35		5.5	24/117	19/55	600.000 ^(b)	0/117	0/55	2.500.000 ^(b)	0/117	0/55
IPH - Gasoline	7,800	SG-VW35A-03	VW35	8/16/2021	5.5	24/117	19/55	600,000	0/117	0/55	2,500,000(5)	0/117	

Bold indicates analyte exceeds one or more SVSLs.

Sample depths are referenced to the top of soil (bottom of pavement). $\mu g/m^3 = micrograms$ per cubic meter

DTSC = Department of Toxic Substances Control

ESL = Environmental Screening Level

ID = identification

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

J = estimated concentration

J- = estimated concentration; potential low bias

NA = not applicable

NE = not established

No. = number

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Goal Compliance:

⁽a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC, 2020) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

⁽b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air ESLs (SWRCB, 2019) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 1 of 11)

(Fuge For Fr)														
			ation ID	VW16A	VW1			18A	VW19A			V20A		/21A
		Sampling Da		07/15/2021 08:30	08/16/202			21 09:12		021 07:23		021 07:07		021 10:59
		Sample Dep		5.5	5.5		5		;	5.5		5.5		5.5
			le Type	N	N		·	V	00.14	N MARKA OR	00.14	N Mark an		N NO44 05
		Field Sa		SG-VW16A-02	SG-VW1			/18A-02		N19A-02		N20A-03		V21A-05
		Lab Sa	-	2107361-06A		2108390-03A Validated		61-07A	2107282-05A		2108390-13A Validated		2108676A-01A Validated	
		Commercial/	Status	Validated	Vallua	alea	Validated		Validated		Validated		Validated	
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Booult C	QA Reason	Popult	QA Reason	n Result QA Reason		Result QA Reason		on Result QA Re	
Acetone	1,100,000	4,700,000	μg/m ³	37	ND (<2.4)	A Keasuii	27	QA Reason	ND (<2.4)	QA Reason	ND (<2.3)	QA Reason	32	
_	· · · · · · · · · · · · · · · · · · ·				` '				` ′					,
Benzene	3.2	14	μg/m ³	ND (<0.63)	ND (<0.61)		ND (<0.63)		ND (<0.61)		ND (<0.60)		3.1	J- 4D,6G
Bromodichloromethane (BDCM)	2.5	11	μg/m³	ND (<1.0)	ND (<1.0)		ND (<1.0)		ND (<1.0)		ND (<0.99)		ND (<1.1)	UJ 4D
tert-Butyl Alcohol (TBA)	NE	NE	μg/m³	ND (<0.88)	ND (<0.85)		ND (<0.88)		ND (<0.85)		ND (<0.83)		ND (<0.92)	UJ 4D
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.3)	ND (<1.2)		ND (<1.3)		ND (<1.2)		ND (<1.2)		2.9	,
Chloroform	4.0	18	μg/m ³	17	190		ND (<0.44)		28		ND (<0.41)		9.1	J- 4D
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.65)	ND (<0.62)		ND (<0.65)		ND (<0.62)		ND (<0.61)		ND (<0.68)	UJ 4D
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.59)	9.2		ND (<0.59)		ND (<0.57)		3.4		ND (<0.62)	UJ 4D
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m³	ND (<0.82)	ND (<0.79)		ND (<0.82)		54		ND (<0.77)		ND (<0.86)	UJ 4D,3E
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m³	ND (<1.5)	ND (<1.4)		ND (<1.5)		ND (<1.4)		ND (<1.4)		ND (<1.6)	UJ 4D
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.2)	ND (<1.1)		ND (<1.2)		ND (<1.1)		ND (<1.1)		ND (<1.2)	UJ 4D
Ethanol	NE	NE	μg/m ³	ND (<2.4)	ND (<2.4)		22		ND (<2.4)		22		7.1	J- 4D,6G
Ethylbenzene	37	160	μg/m ³	ND (<1.2)	9.1		ND (<1.2)		ND (<1.1)		7.0		2.4	J- 4D,6G
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.0)	5.3		ND (<1.0)		ND (<1.0)		7.3		7.2	J- 4D
n-Heptane	14,000	60,000	μg/m ³	ND (<1.0)	ND (<0.99)		ND (<1.0)		ND (<0.99)		ND (<0.97)		ND (<1.1)	UJ 4D
Hexane	24,000	100,000	μg/m ³	ND (<0.68)		J 6E	ND (<0.68)		ND (<0.65)		350		52	J- 4D,3E
2-Hexanone	1,000	4,300	μg/m ³	ND (<0.41)	ND (<0.40)		ND (<0.41)		ND (<0.40)		ND (<0.39)		0.72	J- 4D,6G
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.58)	ND (<0.55)		ND (<0.58)		ND (<0.55)		ND (<0.54)		ND (<0.60)	UJ 4D
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	ND (<0.77)	13		ND (<0.77)		ND (<0.74)		ND (<0.73)		16	J- 4D,3E
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<1.9)	ND (<1.8)		ND (<1.9)		ND (<1.8)		ND (<1.8)		7.6	·
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<1.0)	5.4		ND (<1.0)		ND (<0.98)		ND (<0.96)		ND (<1.1)	UJ 4D
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.81)	ND (<0.78)		ND (<0.81)		ND (<0.78)		ND (<0.76)		ND (<0.85)	UJ 4D
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.86)	ND (<0.82)		ND (<0.86)		ND (<0.82)		ND (<0.81)		1.5	
Propylene	100,000	430,000	μg/m ³	ND (<0.53)	ND (<0.51)		ND (<0.53)		ND (<0.51)		ND (<0.50)		ND (<0.56)	UJ 4D
Tetrachloroethene (PCE)	15	67	μg/m ³	35	110		490		380		33		170	
Tetrahydrofuran	70,000	290,000	_		ND (<0.60)		ND (<0.63)		ND (<0.60)		ND (<0.59)		1.6	
Toluene	10,000	43,000	μg/m ³	ND (<0.41)	5.0		4.8		ND (<0.39)		20		13	
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.45)	ND (<0.43)		ND (<0.45)		ND (<0.43)		ND (<0.42)		l	J- 4D
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.81)	ND (<0.78)		ND (<0.81)		ND (<0.78)		ND (<0.77)		23	
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.3)	ND (<1.2)		ND (<1.3)		9.2		ND (<1.2)		1.8	
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.60)	7.7		ND (<0.60)		ND (<0.57)		7.7		8.5	
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.1)	ND (<1.0)		ND (<0.00)		ND (<0.37)		ND (<1.0)		3.8	
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<1.1)	38								6.5	
o-Xylene	3,300	15,000	μg/m ³	ND (<1.0)	15		ND (<1.0)		ND (<1.0) ND (<1.1)		28 9.7		3.1	
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m³				ND (<1.1)						l	
1711 - Gasuline	20,000	00,000	μу/П	ND (<430)	4,100		ND (<430)		ND (<410)		740		ואט (<450)	UJ 4D,3E

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 2 of 11)

(1 dgo 2 of 11)															
		Loc	ation ID	VV	V21A	VW22A		VW24A		VW25A		VV	V26A		/27A
		Sampling Da		8/30/20)21 11:25	07/14/2	021 12:40	08/17/20	021 08:25	07/13/2	021 12:50	07/09/2	021 15:03	07/15/20	021 06:03
		Sample Dep			5.5		5.5		5.5	;	5.5		5.5		5.5
			le Type		FR		N		N		N		N		N
		Field Sa	•		N21A-06		V22A-02		V24A-05		V25A-02		V26A-02		V27A-02
		Lab Sa	mple ID				284-24A		90-15A		282-11A		41A-21A	2107361-02A	
		Status		Vali	idated	Vali	dated	Vali	dated	Validated		Vali	idated	Validated	
	D : 1 (: 1 0) (01 (a)	Commercial/	l				1				1		l		
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	†	QA Reason		QA Reason		QA Reason		QA Reason		QA Reason	1	QA Reason
Acetone	1,100,000	4,700,000	μg/m ³	18		ND (<1.9)		25		34		ND (<2.5)		ND (<2.5)	
Benzene	3.2	14	μg/m ³	1	J- 4D,6G	ND (<0.26)		ND (<0.61)		ND (<0.74)		ND (<0.63)		ND (<0.64)	
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	ND (<1.4)		ND (<1.4)		ND (<1.0)		ND (<1.2)		ND (<1.0)		ND (<1.1)	
tert-Butyl Alcohol (TBA)	NE	NE	μg/m ³	ND (<1.2)	UJ 4D	ND (<1.2)		ND (<0.85)		ND (<1.0)		ND (<0.88)		ND (<0.90)	
Carbon Disulfide	24,000	100,000	μg/m ³	6.1	J- 4D,6G	ND (<3.2)		15		ND (<1.5)		ND (<1.3)		ND (<1.3)	
Chloroform	4.0	18	μg/m ³	8.6	J- 4D	12		ND (<0.42)		ND (<0.51)		ND (<0.44)		ND (<0.45)	
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.70)	UJ 4D	ND (<0.68)		ND (<0.62)		ND (<0.76)		ND (<0.65)		ND (<0.66)	
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.82)	UJ 4D	ND (<0.80)		3.7		ND (<0.69)		ND (<0.59)		ND (<0.61)	i
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	17	J- 4D,3E	ND (<0.97)		7.8		8.8		ND (<0.82)		ND (<0.84)	i
cis-1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<0.79)	UJ 4D	ND (<0.78)		ND (<1.4)		ND (<1.8)		ND (<1.5)		ND (<1.5)	1
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.7)	UJ 4D	ND (<1.7)	UJ 5A	ND (<1.1)		ND (<1.4)		ND (<1.2)	UJ 5A	ND (<1.2)	
Ethanol	NE	NE	μg/m ³	4.6	J- 4D,6G	ND (<2.2)		22		ND (<2.8)		ND (<2.4)		ND (<2.5)	
Ethylbenzene	37	160	μg/m ³	1.9	J- 4D,6G	6.5		6.9		15		ND (<1.2)		ND (<1.2)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	7.1	J- 4D	13		7.1		18		5.7		ND (<1.1)	
n-Heptane	14,000	60,000	μg/m ³	ND (<0.81)	UJ 4D	ND (<0.80)		ND (<0.99)		ND (<1.2)		ND (<1.0)		ND (<1.0)	
Hexane	24,000	100,000	μg/m ³	31	J- 4D,3E	ND (<0.71)		270		ND (<0.79)		ND (<0.68)		8.7	
2-Hexanone	1,000	4,300	μg/m ³	ND (<1.5)	UJ 4D	ND (<1.5)		ND (<0.40)		ND (<0.48)		ND (<0.41)		ND (<0.42)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.40)		ND (<0.39)		ND (<0.55)		ND (<0.67)		ND (<0.58)		ND (<0.59)	
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	8.7	J- 4D,6G,3E	11	J 6G	13		ND (<0.90)		12		ND (<0.79)	
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	4.9	J- 4D,6G	ND (<2.3)		ND (<1.8)		ND (<2.2)		ND (<1.9)		ND (<1.9)	-
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<0.68)	•	ND (<0.67)		ND (<0.98)		ND (<1.2)		ND (<1.0)		ND (<1.0)	
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.98)		ND (<0.96)		ND (<0.78)		ND (<0.95)		ND (<0.81)		ND (<0.83)	-
Propylbenzene	33,000	150,000	μg/m ³	1.6		ND (<0.30)		ND (<0.82)		ND (<1.0)		ND (<0.86)		ND (<0.87)	-
Propylene	100,000	430,000	μg/m ³	ND (<1.4)		ND (<1.4)		ND (<0.51)		ND (<0.62)		ND (<0.53)		ND (<0.54)	-
Tetrachloroethene (PCE)	15	67	μα/m ³	150	J- 4D	110		260		130		55		23	
Tetrahydrofuran	70,000	290,000	ug/m ³	ND (<0.71)	UJ 4D	ND (<0.70)		ND (<0.60)		ND (<0.73)		ND (<0.63)		ND (<0.64)	
Toluene	10,000	43,000	μg/m ³		J- 4D	26		16		49		15		7.0	-
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	1	J- 4D,6G	ND (<0.72)		ND (<0.43)		ND (<0.52)		ND (<0.45)		ND(<0.46)	
Trichloroethene (TCE)	16	100	μg/m ³		J- 4D	6.7		10		ND (<0.95)		ND (<0.81)		ND (<0.83)	
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³		J- 4D,6G	ND (<0.70)		ND (<1.2)		ND (<1.5)		ND (<1.3)		ND (<1.3)	
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³		J- 4D	16		7.1		145 (11.0)		ND (<0.60)		ND (<0.61)	
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³		J- 4D,6G	ND (<0.83)		ND (<1.0)		ND (<1.2)		ND (<1.1)		ND (<1.1)	-
m- & p-Xylenes	3,300	15,000	μg/m ³	7.4	-	18		26		56		8.2		ND (<1.1)	
o-Xylene	3,300	15,000	μg/m ³		J- 4D,6G	10		9.2		19		5.9		ND (<1.1) ND (<1.2)	
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³												
1F11 - Ga50IIIIE	20,000	00,000	μy/III	530	J- 4D,3E	ND (<440)		650		ND (<500)		ND (<430)		ND (<440)	

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 3 of 11)

		1	-4: ID	\	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ /\A/OOA	1/1/04 A	\ /\A/OO A	\ /\A/QQA
		Loc Sampling Da	ation ID	VW28A 07/15/2021 15:31	VW29A 08/17/2021 09:04	VW30A 07/15/2021 08:17	VW31A 07/09/2021 13:34	VW32A 07/12/2021 11:26	VW33A 07/14/2021 12:18
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	0.5 N	N 5.5	0.5 N	3.5 N	3.5 N	0.5 N
		Field Sa		SG-VW28A-02	SG-VW29A-03	SG-VW30A-03	SG-VW31A-02	SG-VW32A-03	SG-VW33A-02
		Lab Sa		2107361-12A	2108390-16A	2107362A-04A	2107241A-18A	2107260A-02A	2107284-11A
			Status	Validated	Validated	Validated	Validated	Validated	Validated
		Commercial/		_	_	_	_	_	_
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Acetone	1,100,000	4,700,000	μg/m³	33	ND (<2.5)	37	36	ND (<2.4)	35
Benzene	3.2	14	μg/m³	ND (<0.71)	ND (<0.64)	ND (<0.37)	ND (<0.66)	ND (<0.34)	ND (<0.30)
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	ND (<1.2)	ND (<1.1)	43	ND (<1.1)	ND (<1.8)	ND (<1.6)
tert-Butyl Alcohol (TBA)	NE	NE	μg/m ³	ND (<0.98)	ND (<0.90)	ND (<1.7)	ND (<0.92)	ND (<1.6)	ND (<1.4)
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.4)	ND (<1.3)	ND (<4.5)	ND (<1.3)	ND (<4.2)	21
Chloroform	4.0	18	μg/m ³	ND (<0.49)	ND (<0.45)	1,500	ND (<0.46)	ND (<0.83)	ND (<0.73)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.72)	ND (<0.66)	ND (<0.97)	ND (<0.68)	ND (<0.90)	ND (<0.80)
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.66)	ND (<0.61)	ND (<1.1)	ND (<0.62)	ND (<1.1)	ND (<0.94)
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	ND (<0.91)	5.7	11	ND (<0.86)	ND (<1.3)	ND (<1.1)
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<1.7)	ND (<1.5)	ND (<1.1)	ND (<1.6)	ND (<1.0)	ND (<0.91)
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.3)	ND (<1.2)	ND (<2.4) UJ 5A	ND (<1.2) UJ 5A	ND (<2.2) UJ 5A	ND (<2.0) UJ 5A
Ethanol	NE	NE	μg/m ³	ND (<2.7)	25	ND (<3.2)	ND (<2.6)	ND (<2.9)	ND (<2.6) UJ 2A-
Ethylbenzene	37	160	μg/m ³	ND (<1.3)	5.7	ND (<1.1)	ND (<1.2)	ND (<1.0)	ND (<0.92)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.2)	6.9	ND (<1.9)	ND (<1.1)	ND (<1.8)	ND (<1.6)
n-Heptane	14,000	60,000	μg/m ³	ND (<1.1)	ND (<1.0)	ND (<1.1)	ND (<1.1)	ND (<1.0)	N D(<0.93)
Hexane	24,000	100,000	μg/m ³	4.7	240	ND (<1.0)	ND (<0.70)	16	ND (<0.83)
2-Hexanone	1,000	4,300	μg/m ³	ND (<0.46)	ND (<0.42)	ND (<2.1)	ND (<0.43)	ND (<2.0)	ND (<1.8)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.64)	ND (<0.59)	ND (<0.56)	ND (<0.60)	ND (<0.52)	ND (<0.46)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	13	19	ND (<1.0)	ND (<0.81)	ND (<0.95)	ND (<0.84)
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.1)	ND (<1.9)	ND (<3.2)	ND (<2.0)	ND (<3.0)	ND (<2.6)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<1.1)	ND (<1.0)	ND (<0.95)	ND (<1.1)	ND (<0.88)	ND (<0.78)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.90)	ND (<0.83)	ND (<1.4)	ND (<0.85)	ND (<1.3)	ND (<1.1)
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.95)	ND (<0.87)	ND (<0.42)	ND (<0.89)	ND (<0.39)	ND (<0.35)
Propylene	100,000	430,000	μg/m ³	ND (<0.60)	ND (<0.54)	ND (<2.0)	ND (<0.56)	ND (<1.9)	N D(<1.6)
Tetrachloroethene (PCE)	15	67	μg/m ³	ND (<1.3)	140	250	170	130	15
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.70)	ND (<0.64)	ND (<0.98)	ND (<0.65)	ND (<0.92)	ND (<0.81)
Toluene	10,000	43,000	μg/m ³	8.2	13	ND (<1.4)	ND (<0.42)	ND (<1.3)	7.5
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.50)	ND(<0.46)	ND (<1.0)	ND (<0.47)	ND (<0.95)	ND (<0.84)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.91)	ND (<0.83)	ND (<1.0)	ND (<0.85)	ND (<0.97)	ND (<0.86)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.4)	ND (<1.3)	ND (<0.99)	ND (<1.3)	ND (<0.92)	ND (<0.82)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.66)	8.1	ND (<2.8)	ND (<0.62)	ND (<2.6)	ND (<2.3)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<0.97)
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<1.2)	21	ND (<3.6)	ND (<1.1)	ND (<3.4)	ND (<3.0)
o-Xylene	3,300	15,000	μg/m ³	ND (<1.3)	7.8	ND (<1.8)	ND (<1.2)	ND (<1.7)	ND (<1.5)
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<480)	490	ND (<630)	ND (<450)	ND (<590)	ND (<520)

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 4 of 11)

				<u> </u>	uge + or rry				
			ation ID		VW34A	VW35A	VW36A	VW37A	VW38A
		Sampling Da			07/14/2021 13:30	08/16/2021 09:01	07/12/2021 13:03	07/13/2021 09:12	07/14/2021 10:24
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	N	FD	N	N	N	N
		Field Sa		SG-VW34A-02	SG-VW34A-03	SG-VW35A-03	SG-VW36A-02	SG-VW37A-02	SG-VW38A-02
		Lab Sa	-	2107284-13A	2107284-14A	2108390-01A	2107260A-05A	2107260A-17A	2107284-07A
	<u> </u>	Commercial/	Status	Validated	Validated	Validated	Validated	Validated	Validated
Analyta	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Analyte Acetone	1,100,000	4,700,000	μg/m ³	ND (<1.9)	ND (<2.0)	ND (<2.5)	27		ND (<2.0)
_	·			` '	` '\			ND (<1.8)	` '
Benzene Bramadiahlaramathana (BDCM)	3.2 2.5	14	μg/m ³	ND (<0.27)	ND (<0.28)	ND (<0.63)	ND (<0.27)	12 ND (41.2)	ND (<0.28)
Bromodichloromethane (BDCM)	NE	11 NE	μg/m ³	ND (<1.4)	ND (<1.5)	ND (<1.0)	ND (<1.5)	ND (<1.3)	ND (<1.5)
tert-Butyl Alcohol (TBA)			μg/m ³	ND (<1.2)	ND (<1.3)	ND (<0.88)	ND (<1.2)	ND (<1.1)	ND (<1.3)
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<3.3)	ND (<3.4)	ND (<1.3)	37	ND (<3.0)	ND (<3.4)
Chloroform	4.0	18	μg/m ³	ND (<0.65)	ND (<0.67)	ND (<0.44)	ND (<0.66)	ND (<0.60)	ND (<0.68)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.71)	ND (<0.73)	ND (<0.65)	ND (<0.72)	ND (<0.65)	ND (<0.73)
Cyclohexane	210,000	870,000	μg/m³	ND (<0.83)	ND (<0.86)	24	ND (<0.84)	34	ND (<0.86)
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m³	ND (<1.0)	ND (<1.0)	ND (<0.82)	ND (<1.0)	ND (<0.92)	ND (<1.0)
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m³	ND (<0.81)	ND (<0.83)	ND (<1.5)	ND (<0.82)	ND (<0.74)	ND (<0.84)
1,2-Dichloropropane	25	110	μg/m³	ND (<1.8) UJ 5A	ND (<1.8) UJ 5A	ND (<1.2)	ND (<1.8) UJ 5A	ND (<1.6) UJ 5A	ND (<1.8) UJ 5A
Ethanol	NE	NE	μg/m ³	ND (<2.3) UJ 2A-	ND (<2.4)	ND (<2.4)	ND (<2.3)	ND (<2.1)	ND (<2.4) UJ 2A-
Ethylbenzene	37	160	μg/m ³	ND (<0.82)	ND (<0.84)	13	ND (<0.83)	49	ND (<0.85)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m³	ND (<1.4)	ND (<1.4)	ND (<1.0)	ND (<1.4)	43	ND (<1.5)
n-Heptane	14,000	60,000	μg/m ³	ND (<0.83)	ND (<0.85)	ND (<1.0)	ND (<0.83)	34	ND (<0.86)
Hexane	24,000	100,000	μg/m ³	ND (<0.74)	ND (<0.76)	4,300 J 6E	ND (<0.74)	26	ND (<0.76)
2-Hexanone	1,000	4,300	μg/m³	ND (<1.6)	ND (<1.6)	ND (<0.41)	ND (<1.6)	ND (<1.4)	ND (<1.6)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m³	ND (<0.41)	ND (<0.42)	ND (<0.58)	ND (<0.41)	73	ND (<0.42)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m³	ND (<0.74)	ND (<0.76)	ND (<0.77)	ND (<0.75)	ND (<0.68)	ND (<0.77)
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.3)	ND (<2.4)	ND (<1.9)	ND (<2.4)	ND (<2.1)	ND (<2.4)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<0.70)	ND (<0.71)	5.1	ND (<0.70)	ND (<0.63)	ND (<0.72)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<1.0)	ND (<1.0)	ND (<0.81)	ND (<1.0)	38	ND (<1.0)
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.31)	ND (<0.32)	ND (<0.86)	ND (<0.31)	8.8	ND (<0.32)
Propylene	100,000	430,000	μg/m ³	ND (<1.5)	ND (<1.5)	ND (<0.53)	ND (<1.5)	ND (<1.3)	ND (<1.5)
Tetrachloroethene (PCE)	15	67	μg/m ³	21	21	400	230	ND (<1.2)	130
Tetrahydrofuran	70,000	290,000	μg/m ³		ND (<0.74)	ND (<0.63)	ND (<0.73)	ND (<0.66)	ND (<0.75)
Toluene	10,000	43,000	μg/m ³	ND (<1.0)	ND (<1.0)	5.2	ND (<1.0)	92	ND (<1.1)
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.74)	ND (<0.76)	ND (<0.45)	ND (<0.75)	ND (<0.68)	ND (<0.77)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.76)	ND (<0.78)	ND (<0.81)	ND (<0.77)	ND (<0.70)	ND (<0.79)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<0.73)	ND (<0.75)	ND (<1.3)	ND (<0.74)	ND (<0.66)	ND (<0.75)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<2.0)	ND (<2.1)	7.0	ND (<2.1)	30	ND (<2.1)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.86)	ND (<0.88)	ND (<1.1)	ND (<0.87)	12	ND (<0.89)
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<2.7)	ND (<2.8)	53	ND (<2.7)	170	ND (<2.8)
o-Xylene	3,300	15,000	μg/m ³	ND (<2.7)	ND (<2.8)	18	ND (<2.7) ND (<1.3)	49	ND (<2.8)
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³						
1F11 - GaSUIIIE	20,000	00,000	μg/III	ND (<460)	ND (<470)	7,800	ND (<470)	3,100	ND (<480)

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 5 of 11)

				(1					
			ation ID	VW38A	VW39A	VW40A	VW41A	VW42A	VW42A
		Sampling Da		07/14/2021 10:24	07/14/2021 09:16	07/13/2021 07:46	07/13/2021 10:30	07/13/2021 11:56	07/13/2021 11:56
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	FD	N OO MAYOO A OO	N	N N	N OO MAMAAA OO	FD
		Field Sa		SG-VW38A-03	SG-VW39A-02	SG-VW40A-02	SG-VW41A-03	SG-VW42A-03	SG-VW42A-04
		Lab Sa	שו mpie Status	2107284-08A Validated	2107284-05A Validated	2107260A-14A Validated	2107260A-19A Validated	2107260A-21A Validated	2107260A-22A Validated
	1	Commercial/	Status	validated	validated	validated	validated	validated	validated
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Acetone	1,100,000	4,700,000	μg/m ³	31	ND (<1.8)	ND (<1.7)	ND (<1.7)	ND (<1.8)	ND (<1.8)
Benzene	3.2	14	μg/m ³	ND (<0.28)	ND (<0.25)	ND (<0.24)	ND (<0.24)	ND (<0.26)	ND (<0.25)
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.4)	ND (<1.4)
tert-Butyl Alcohol (TBA)	NE NE	NE	μg/m ³	ND (<1.3)	ND (<1.1)	ND (<1.1)	ND (<1.1)	ND (<1.2)	ND (<1.2)
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<3.4)	ND (<3.0)	ND (<2.9)	ND (<1.1)	ND (<3.1)	ND (<1.2)
Chloroform	4.0	18	μg/m ³	ND (<3.4)	ND (<3.0) ND (<0.60)	ND (<2.9) ND (<0.58)	ND (<0.58)	ND (<3.1) ND (<0.62)	ND (<3.1) ND (<0.61)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.87) ND (<0.73)	ND (<0.60)	ND (<0.63)	ND (<0.63)	ND (<0.62)	ND (<0.66)
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.73) ND (<0.86)	ND (<0.65) ND (<0.76)	ND (<0.63) ND (<0.74)	ND (<0.63) ND (<0.75)	ND (<0.67) ND (<0.79)	ND (<0.66) ND (<0.78)
	·			` '	•	` '			·
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	ND (<1.0)	ND (<0.92)	ND (<0.90)	ND (<0.90)	ND (<0.95)	ND (<0.95)
cis-1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<0.83)	ND (<0.74)	ND (<0.72)	ND (<0.72)	ND (<0.76)	ND (<0.76)
1,2-Dichloropropane	25 NE	110	μg/m ³	ND (<1.8) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A
Ethanol	NE 27	NE 400	μg/m ³	ND (<2.4) UJ 2A-	ND (<2.1) UJ 2A-	ND (<2.0)	ND (<2.1)	23	ND (<2.2)
Ethylbenzene	37	160	μg/m ³	ND (<0.84)	ND (<0.75)	ND (<0.73)	ND (<0.73)	ND (<0.77)	ND (<0.77)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE 11.000	NE	μg/m³	ND (<1.4)	ND (<1.3)	ND (<1.2)	ND (<1.3)	ND (<1.3)	ND (<1.3)
n-Heptane	14,000	60,000	μg/m ³	ND (<0.85)	ND (<0.75)	ND (<0.74)	ND (<0.74)	ND (<0.78)	ND (<0.78)
Hexane	24,000	100,000	μg/m³	ND (<0.76)	ND (<0.67)	ND (<0.66)	ND (<0.66)	4.0	ND (<0.69)
2-Hexanone	1,000	4,300	μg/m ³	ND (<1.6)	ND (<1.4)	ND (<1.4)	ND (<1.4)	ND (<1.5)	ND (<1.5)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.42)	ND (<0.37)	ND (<0.36)	ND (<0.36)	ND (<0.38)	ND (<0.38)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	11	ND (<0.68)	ND (<0.66)	ND (<0.66)	ND (<0.70)	ND (<0.70)
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.4)	ND (<2.1)	ND (<2.1)	ND (<2.1)	ND (<2.2)	ND (<2.2)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<0.71)	ND (<0.63)	ND (<0.62)	ND (<0.62)	ND (<0.66)	ND (<0.65)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<1.0)	ND (<0.91)	ND (<0.89)	ND (<0.89)	ND (<0.94)	ND (<0.94)
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.32)	ND (<0.28)	ND (<0.28)	ND (<0.28)	ND (<0.29)	ND (<0.29)
Propylene	100,000	430,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.4)	ND (<1.4)
Tetrachloroethene (PCE)	15	67	μg/m ³	120	22	14	37	31	31
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.74)	ND (<0.66)	ND (<0.64)	ND (<0.64)	ND (<0.68)	ND (<0.68)
Toluene	10,000	43,000	μg/m ³	ND (<1.0)	ND (<0.94)	ND (<0.92)	ND (<0.92)	ND (<0.97)	ND (<0.97)
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.76)	ND (<0.68)	ND (<0.66)	ND (<0.67)	ND (<0.70)	ND (<0.70)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.78)	ND (<0.70)	ND (<0.68)	ND (<0.68)	ND (<0.72)	ND (<0.72)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m³	ND (<0.75)	ND (<0.66)	ND (<0.65)	ND (<0.65)	ND (<0.69)	ND (<0.68)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<2.1)	ND (<1.9)	ND (<1.8)	ND (<1.8)	ND (<1.9)	ND (<1.9)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.88)	ND (<0.79)	ND (<0.77)	ND (<0.77)	ND (<0.81)	ND (<0.81)
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<2.8)	ND (<2.4)	ND (<2.4)	ND (<2.4)	ND (<2.5)	ND (<2.5)
o-Xylene	3,300	15,000	μg/m ³	ND (<1.3)	ND (<1.2)	ND (<1.2)	ND (<1.2)	ND (<1.2)	ND (<1.2)
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<470)	ND (<420)	ND (<410)	ND (<410)	ND (<440)	ND (<430)

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 6 of 11)

		Loc	ation ID	VW43A	VW44A	VW45A	VW46A	VW47A	VW47A
		Sampling Da		07/08/2021 12:10	08/16/2021 09:53	07/08/2021 13:58	07/08/2021 15:38	07/08/2021 18:54	07/08/2021 18:54
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	N	N	N	N	N	FD
		Field Sa		SG-VW43A-02	SG-VW44A-03	SG-VW45A-03	SG-VW46A-02	SG-VW47A-02	SG-VW47A-03
		Lab Sa	-	2107241A-01A	2108390-02A	2107241A-03A	2107241A-05A	2107241A-09A	2107241A-10A
	1	Commercial/	Status	Validated	Validated	Validated	Validated	Validated	Validated
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason					
Acetone	1,100,000	4,700,000	μg/m ³	130	ND (<2.5)	69	52	46	35
_		· · ·			` '				
Benzene Bromodiahloromothono (BDCM)	3.2 2.5	14	μg/m ³	ND (<0.74)	ND (<0.64)	ND (<0.68)	ND (<0.26)	ND (<0.26)	ND (<0.26)
Bromodichloromethane (BDCM)	NE	11 NE	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.4)	ND (<1.4)	ND (<1.4)
tert-Butyl Alcohol (TBA)		NE 100,000	μg/m ³	ND (<1.0)	ND (<0.90)	ND (<0.94)	ND (<1.2)	38 J 3D	ND (<1.2) UJ 3D
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.4)	ND (<3.2)	ND (<3.2)	ND (<3.2)
Chloroform	4.0	18	μg/m ³	ND (<0.52)	35	ND (<0.47)	ND (<0.64)	ND (<0.63)	ND (<0.63)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.76)	ND (<0.66)	ND (<0.69)	ND (<0.69)	ND (<0.68)	ND (<0.68)
Cyclohexane	210,000	870,000	μg/m³	ND (<0.70)	3.9	ND (<0.63)	ND (<0.81)	ND (<0.96)	ND (<0.96)
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	ND (<0.96)	ND (<0.84)	ND (<0.88)	ND (<0.98)	ND (<0.97)	ND (<0.97)
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m³	ND (<1.8)	ND (<1.5)	ND (<1.6)	ND (<0.79)	ND (<0.78)	ND (<0.78)
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.4)	ND (<1.2)	ND (<1.2)	ND (<1.7) UJ 5A	ND (<1.7) UJ 5A	ND (<1.7) UJ 5A
Ethanol	NE	NE	μg/m ³	24	ND (<2.5)	ND (<2.6)	ND (<2.2)	ND (<2.2)	ND (<2.2)
Ethylbenzene	37	160	μg/m ³	ND (<1.4)	16	ND (<1.3)	ND (<0.80)	ND (<0.79)	ND (<0.79)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m³	ND (<1.2)	5.7	ND (<1.1)	ND (<1.4)	ND (<1.4)	ND (<1.4)
n-Heptane	14,000	60,000	μg/m ³	ND (<1.2)	ND (<1.0)	ND (<1.1)	ND (<0.96)	ND (<0.96)	ND (<0.79)
Hexane	24,000	100,000	μg/m ³	ND (<0.96)	890	ND (<0.72)	ND (<0.72)	ND (<0.71)	ND (<0.71)
2-Hexanone	1,000	4,300	μg/m³	ND (<0.48)	ND (<0.42)	ND (<0.44)	ND (<1.5)	ND (<1.5)	ND (<1.5)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m³	ND (<0.68)	ND (<0.59)	ND (<0.61)	ND (<0.40)	ND (<0.39)	ND (<0.39)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m³	92	ND (<0.79)	25	14	27 J 3D	ND (<0.72) UJ 3D
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.2)	ND (<1.9)	ND (<2.0)	ND (<2.3)	ND (<2.3)	ND (<2.2)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<1.2)	7.2	ND (<1.1)	ND (<0.68)	ND (<0.67)	ND (<0.67)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.96)	ND (<0.83)	ND (<0.87)	ND (<0.97)	ND (<0.96)	ND (<0.96)
Propylbenzene	33,000	150,000	μg/m ³	ND (<1.0)	ND (<0.87)	ND (<0.91)	ND (<0.30)	ND (<0.30)	ND (<0.30)
Propylene	100,000	430,000	μg/m ³	10	ND (<0.54)	9.8	ND (<1.4)	ND (<1.4)	ND (<1.4)
Tetrachloroethene (PCE)	15	67	μg/m ³	11	11	11	20	27	27
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.74)	ND (<0.64)	ND (<0.67)	ND (<0.70)	ND (<0.70)	ND (<0.69)
Toluene	10,000	43,000	μg/m ³	ND (<0.48)	6.7	ND (<0.44)	ND (<1.0)	ND (<0.99)	ND (<0.99)
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.53)	ND (<0.46)	ND (<0.48)	ND (<0.72)	ND (<0.72)	ND (<0.72)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.96)	ND (<0.83)	7.8	ND (<0.74)	ND (<0.74)	ND (<0.73)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<0.71)	ND (<0.70)	ND (<0.70)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.70)	8.7	ND (<0.64)	ND (<2.0)	ND (<2.0)	ND (<2.0)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.3)	ND (<1.1)	ND (<1.1)	ND (<0.84)	ND (<0.83)	ND (<0.83)
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<1.2)	56	ND (<1.1)	ND (<2.6)	6.2	ND (<2.6)
o-Xylene	3,300	15,000	μg/m ³	ND (<1.3)	20	ND (<1.2)	ND (<1.3)	ND (<1.3)	ND (<1.2)
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<500)	1,900	ND (<460)	ND (<450)	ND (<440)	ND (<440)

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 7 of 11)

					uge / or i i j				
			ation ID	VW48A	VW49A	VW50A	VW51A	VW52A	VW53A
		Sampling Da		07/09/2021 07:19	07/09/2021 08:43	07/09/2021 10:19	07/12/2021 14:28	07/13/2021 09:04	07/13/2021 10:53
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	N OO MAAAA OO	N OO MAMAAA OO	N N	N N	N 00.144504.00	N
		Field Sa	•	SG-VW48A-03	SG-VW49A-03	SG-VW50A-03	SG-VW51A-02	SG-VW52A-02	SG-VW53A-03
		Lab Sa	שו mpie Status	2107241A-12A Validated	2107241A-14A Validated	2107241A-16A Validated	2107260A-07A Validated	2107282-07A Validated	2107282-09A Validated
		Commercial/	Status	Valluateu	valluateu	valluateu	valiuateu	valiuateu	valiuateu
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Acetone	1,100,000	4,700,000	μg/m ³	64	54	ND (<2.5)	ND (<2.0)	53	160
Benzene	3.2	14	μg/m ³	ND (<0.25)	ND (<0.61)	ND (<0.64)	ND (<0.28)	ND (<0.65)	7.4
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	ND (<1.3)	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<1.1)	ND (<1.1)
tert-Butyl Alcohol (TBA)	NE NE	NE	μg/m ³	ND (<1.2)	ND (<0.85)	ND (<0.88)	ND (<1.3)	ND (<0.91)	26
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<3.0)	ND (<1.2)	ND (<1.3)	ND (<3.4)	ND (<1.3)	ND (<1.3)
Chloroform	4.0	18	μg/m ³	6.8	6.3	ND (<0.44)	ND (<0.67)	18	ND (<0.46)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.66)	5.5	ND (<0.65)	ND (<0.73)	ND (<0.67)	ND (<0.68)
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.77)	ND (<0.58)	ND (<0.60)	ND (<0.86)	ND (<0.61)	ND (<0.62)
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	ND (<0.77)	ND (<0.79)	ND (<0.82)	ND (<1.0)	45	1ND (<0.02) 24
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<0.35)	ND (<1.4)	ND (<1.5)	ND (<0.83)	ND (<1.6)	ND (<1.6)
1,2-Dichloropropane	25	110	μg/m ³	ND (<0.73) ND (<1.6) UJ 5A	ND (<1.4) ND (<1.1) UJ 5A	ND (<1.2) UJ 5A	ND (<1.8) UJ 5A	ND (<1.2)	ND (<1.2)
Ethanol	NE	NE	μg/m ³	ND (<2.1)	ND (<2.4)	ND (<1.2) 03 3A ND (<2.5)	ND (<1.8) 03 3A ND (<2.4)	ND (<1.2) ND (<2.5)	ND (<1.2)
Ethylbenzene	37	160		` '	` '		` '	` '	` '
-	NE	NE	μg/m ³	ND (<0.76)	ND (<1.2)	ND (<1.2)	ND (<0.84)	ND (<1.2)	ND (<1.2)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)			μg/m ³	ND (<1.3)	ND (<1.0)	ND (<1.0)	ND (<1.4)	ND (<1.1)	ND (<1.1)
n-Heptane	14,000	60,000	μg/m ³	ND (<0.76)	ND (<1.0)	ND (<1.0)	ND (<0.85)	ND (<1.1)	ND (<1.1)
Hexane	24,000	100,000	μg/m ³	ND (<0.68)	ND (<0.65)	ND (<0.68)	ND (<0.76)	ND (<0.70)	ND (<0.70)
2-Hexanone	1,000	4,300	μg/m ³	ND (<1.4)	ND (<0.40)	ND (<0.42)	ND (<1.6)	ND (<0.43)	ND (<0.43)
Isooctane (2,2,4-Trimethylpentane)	NE 7.000	NE	μg/m ³	ND (<0.38)	ND (<0.56)	ND (<0.58)	ND (<0.42)	ND (<0.60)	ND (<0.60)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	57	22	ND (<0.78)	12	ND (<0.80)	ND (<0.81)
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.2)	ND (<1.8)	ND (<1.9)	ND (<2.4)	ND (<1.9)	26
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<0.64)	ND (<0.99)	ND (<1.0)	ND (<0.71)	ND (<1.0)	ND (<1.1)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.92)	ND (<0.78)	ND (<0.82)	ND (<1.0)	ND (<0.84)	ND (<0.85)
Propylbenzene	33,000	150,000	μg/m³	ND (<0.29)	ND (<0.83)	ND (<0.86)	ND (<0.32)	ND (<0.88)	ND (<0.89)
Propylene	100,000	430,000	μg/m³	ND (<1.4)	ND (<0.52)	ND (<0.54)	ND (<1.5)	ND (<0.55)	ND (<0.56)
Tetrachloroethene (PCE)	15	67	μg/m ³	95	140	310	120	240	91
Tetrahydrofuran	70,000	290,000	μg/m ³		ND (<0.60)	ND (<0.63)	ND (<0.74)	ND (<0.65)	ND (<0.65)
Toluene	10,000	43,000	μg/m ³	ND (<0.95)	ND (<0.39)	ND (<0.41)	ND (<1.0)	ND (<0.42)	ND (<0.42)
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.69)	ND (<0.43)	ND (<0.45)	ND (<0.76)	ND (<0.46)	ND (<0.47)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.71)	ND (<0.79)	ND (<0.82)	ND (<0.78)	ND (<0.84)	ND (<0.85)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<0.67)	ND (<1.2)	ND (<1.3)	ND (<0.75)	7.8	ND (<1.3)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.9)	ND (<0.58)	ND (<0.60)	ND (<2.1)	ND (<0.62)	ND (<0.62)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.80)	ND (<1.0)	ND (<1.1)	ND (<0.88)	ND (<1.1)	ND (<1.1)
m- & p-Xylenes	3,300	15,000	μg/m³	ND (<2.5)	ND (<1.0)	ND (<1.0)	ND (<2.8)	ND (<1.1)	ND (<1.1)
o-Xylene	3,300	15,000	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.3)	ND (<1.2)	ND (<1.2)
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<430)	ND (<420)	ND (<430)	ND (<470)	ND (<440)	ND (<450)

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 8 of 11)

				`	uge o or 11)				
			ation ID	VW55A	VW56A	VW57A	VW58A	VW59A	VW60A
		Sampling Da		08/17/2021 06:34	07/14/2021 08:13	07/14/2021 07:07	08/16/2021 11:13	08/17/2021 10:16	08/16/2021 12:53
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type	N	N	N	N	N	N
		Field Sa		SG-VW55A-03	SG-VW56A-02	SG-VW57A-02	SG-VW58A-02	SG-VW59A-02	SG-VW60A-02
		Lab Sa	-	2108390-12A	2107284-03A	2107284-01A	2108390-04A	2108390-18A	2108390-07A
	1	Commercial/	Status	Validated	Validated	Validated	Validated	Validated	Validated
Analyta	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Danit OA Danas	Result QA Reason	Danit OA Danas	Result QA Reason	Result QA Reason
Analyte					Result QA Reason		Result QA Reason		
Acetone	1,100,000	4,700,000	μg/m ³	ND (<2.4)	ND (<1.8)	ND (<1.8)	27	ND (<2.4)	ND (<2.4)
Benzene	3.2	14	μg/m ³	3.2	ND (<0.25)	ND (<0.25)	ND (<0.66)	ND (<0.61)	4.7
Bromodichloromethane (BDCM)	2.5	11	μg/m³	ND (<1.0)	ND (<1.4)	ND (<1.3)	ND (<1.1)	ND (<1.0)	ND (<1.0)
tert-Butyl Alcohol (TBA)	NE	NE	μg/m³	ND (<0.85)	ND (<1.2)	ND (<1.1)	ND (<0.92)	ND (<0.85)	ND (<0.85)
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.2)	ND (<3.1)	ND (<3.0)	ND (<1.3)	ND (<1.2)	ND (<1.2)
Chloroform	4.0	18	μg/m ³	ND (<0.42)	ND (<0.61)	ND (<0.60)	ND (<0.46)	ND (<0.42)	ND (<0.42)
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.62)	ND (<0.66)	ND (<0.65)	ND (<0.68)	ND (<0.62)	ND (<0.62)
Cyclohexane	210,000	870,000	μg/m³	5.4	ND (<0.78)	ND (<0.76)	ND (<0.62)	ND (<0.57)	ND (<0.57)
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m³	ND (<0.79)	ND (<0.94)	ND (<0.92)	7.0	7.5	7.7
cis -1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<1.4)	ND (<0.75)	ND (<0.74)	ND (<1.6)	ND (<1.4)	ND (<1.4)
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.1)	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.2)	ND (<1.1)	ND (<1.1)
Ethanol	NE	NE	μg/m ³	36	ND (<2.2) UJ 2A-	ND (<2.1) UJ 2A-	ND (<2.6)	22	ND (<2.4)
Ethylbenzene	37	160	μg/m ³	10	ND (<0.77)	ND (<0.75)	6.9	4.4	ND (<1.1)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	10	ND (<1.3)	ND (<1.3)	ND (<1.1)	ND (<1.0)	ND (<1.0)
n-Heptane	14,000	60,000	μg/m ³	ND (<0.99)	ND (<0.77)	ND (<0.76)	ND (<1.1)	ND (<0.99)	ND (<0.99)
Hexane	24,000	100,000	μg/m ³	670	ND (<0.69)	9.5	700	150	420
2-Hexanone	1,000	4,300	μg/m ³	ND (<0.40)	ND (<1.5)	ND (<1.4)	ND (<0.43)	ND (<0.40)	ND (<0.40)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.55)	ND (<0.38)	ND (<0.37)	ND (<0.60)	ND (<0.55)	ND (<0.55)
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	ND (<0.74)	ND (<0.70)	12	ND (<0.81)	ND (<0.74)	ND (<0.74)
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<1.8)	ND (<2.2)	ND (<2.2)	ND (<2.0)	ND (<1.8)	ND (<1.8)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<0.98)	ND (<0.65)	ND (<0.64)	4.7	ND (<0.98)	ND (<0.98)
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.78)	ND (<0.93)	ND (<0.91)	ND (<0.85)	ND (<0.78)	ND (<0.78)
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.82)	ND (<0.29)	ND (<0.28)	ND (<0.89)	ND (<0.82)	ND (<0.82)
Propylene	100,000	430,000	μg/m ³	ND (<0.82)	ND (<1.4)	ND (<1.3)	ND (<0.56)	ND (<0.82)	ND (<0.51)
Tetrachloroethene (PCE)	15	67	μg/m ³	ND (<1.1)	31	92	160	100	96
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.60)	ND (<0.67)	ND (<0.66)	ND (<0.65)	ND (<0.60)	ND (<0.60)
Toluene	10,000	43,000	μg/m ³	32	ND (<0.96)	ND (<0.94)	9.4	14	7.0
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.43)	ND (<0.70)	ND (<0.68)	ND (<0.47)	ND (<0.43)	ND (<0.43)
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.78)	ND (<0.71)	ND (<0.70)	ND (<0.85)	ND (<0.78)	ND (<0.78)
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.2)	ND (<0.68)	ND (<0.67)	ND (<1.3)	ND (<1.2)	ND (<1.2)
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	10	ND (<1.9)	ND (<1.9)	ND (<0.62)	ND (<0.57)	ND (<0.57)
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.0)	ND (<0.80)	ND (<0.79)	ND (<1.1)	ND (<1.0)	ND (<1.0)
m- & p-Xylenes	3,300	15,000	μg/m ³	40	ND (<2.5)	ND (<2.4)	24	16	9.8
o-Xylene	3,300	15,000	μg/m ³	14	ND (<1.2)	ND (<1.2)	10	6.1	4.6
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	1,300	ND (<430)	ND (<420)	1,200	ND (<410)	940
11-11- Gasolillo	20,000	33,300	μg/III	1,500	140 (1430)	140 (1420)	1,200	140 (~410)	370

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 9 of 11)

					ν-	age 3 or 1	-,								
		Loc	ation ID	VV	/61A	VW	/63A	VV	V64A	VV	V65A	VV	V66A	SVI	M-1
		Sampling Da	te/Time	08/16/20	021 13:26	08/16/20	021 14:42	08/17/2	021 09:38	07/30/2	021 09:36	07/30/2	021 11:14	07/29/20	21 08:10
		Sample Dep			5.5		5.5		5.5		5.5		5.5	4	1
			le Type		N		N		N		N		N	N	-
		Field Sa			V61A-02		V63A-02		V64A-02		M65A-01		M66A-01	SG-SVI	
		Lab Sa	•		90-08A		90-09A		390-17A		684-07A		684-09A	210768	
		Commercial/	Status	vaii	dated	vali	dated	vaii	idated	vai	idated	Vali	idated	Valid	atea
Amplita	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Decell	04 D	D	QA Reason	D 14	las Barra	D 16	las Burn	D 14		D !!	los B
Analyte		4,700,000	μg/m ³	Result	QA Reason	Result	QA Reason	Result ND (<2.4)	QA Reason		QA Reason	1	QA Reason	ND (<410)	QA Reason
Acetone	1,100,000	· · · · · · · · · · · · · · · · · · ·						` ′		54		ND (<2.5)		,	
Benzene Brown dichleremethers (BBCM)	3.2	14	μg/m ³	ND (<0.66)		ND (<0.63)		ND (<0.62)		16 ND (44.4)		8.1		ND (<100)	
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	15		ND (<1.0)		10		ND (<1.1)		ND (<1.1)		ND (<170)	
tert-Butyl Alcohol (TBA)	NE 04.000	NE 100,000	μg/m ³	ND (<0.92)		ND (<0.88)		ND (<0.86)		ND (<0.90)		ND (<0.89)		ND (<150)	<u> </u>
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.3)		ND (<1.3)		ND (<1.2)		15		14		ND (<210)	
Chloroform	4.0	18	μg/m ³	240		13		220		ND (<0.45)		ND (<0.44)		ND (<73)	
Cumene (Isopropylbenzene)	14,000	60,000	μg/m ³	ND (<0.68)		ND (<0.65)		ND (<0.64)		ND (<0.67)		ND (<0.66)		ND (<110)	
Cyclohexane	210,000	870,000	μg/m³	ND (<0.62)		ND (<0.59)		ND (<0.58)		9.8		ND (<0.60)		ND (<99)	_
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	6.3		11		12		ND (<0.84)		ND (<0.83)		ND (<140)	
cis-1,2-Dichloroethene (cDCE)	280	1,200	μg/m³	ND (<1.6)		ND (<1.5)		ND (<1.5)		ND (<1.5)		5.0		53,000	
1,2-Dichloropropane	25	110	μg/m³	ND (<1.2)		ND (<1.2)		ND (<1.1)		ND (<1.2)		ND (<1.2)		820	
Ethanol	NE	NE	μg/m ³	ND (<2.6)		ND (<2.4)		20		ND (<2.5)		ND (<2.5)		ND (<410)	
Ethylbenzene	37	160	μg/m ³	7.7		ND (<1.2)		5.8		4.8		ND (<1.2)		ND (<200)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.1)		ND (<1.0)		5.6		ND (<1.1)		ND (<1.1)		ND (<170)	
n-Heptane	14,000	60,000	μg/m ³	ND (<1.1)		ND (<1.0)		ND (<1.0)		19		ND (<1.0)		ND (<170)	
Hexane	24,000	100,000	μg/m ³	300		190		170		190		100		ND (<110)	
2-Hexanone	1,000	4,300	μg/m ³	ND (<0.43)		ND (<0.41)		ND (<0.40)		ND (<0.42)		ND (<0.42)		ND (<69)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.60)		ND (<0.58)		ND (<0.56)		100		42		ND (<96)	
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	ND (<0.81)		22		9.9	J 6G	12		ND (<0.78)		ND (<130)	
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m ³	ND (<2.0)		ND (<1.9)		ND (<1.8)		ND (<1.9)		ND (<1.9)		ND (<310)	,
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m ³	ND (<1.1)		ND (<1.0)		ND (<1.0)		ND (<1.0)		ND (<1.0)		ND (<170)	,
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.85)		ND (<0.81)		ND (<0.80)		ND (<0.83)		ND (<0.82)		ND (<140)	,
Propylbenzene	33,000	150,000	μg/m ³	ND (<0.89)		ND (<0.86)		ND (<0.84)		ND (<0.88)		ND (<0.87)		ND (<140)	,
Propylene	100,000	430,000	μg/m ³	ND (<0.56)		ND (<0.53)		ND (<0.52)		15		ND (<0.54)		ND (<89)	,
Tetrachloroethene (PCE)	15	67	μg/m ³	120		14		300		96		190		330,000	
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.65)		ND (<0.63)		ND (<0.61)		ND (<0.64)		3.4		ND (<100)	,
Toluene	10,000	43,000	μg/m ³			ND (<0.41)		16		37		10		ND (<68)	
1,1,1-Trichloroethane	33,000	150,000	μg/m ³			ND (<0.45)		ND (<0.44)		ND (<0.46)		ND (<0.45)		ND (<75)	
Trichloroethene (TCE)	16	100	μg/m ³			ND (<0.81)		ND (<0.80)		ND (<0.83)		ND (<0.82)		18,000	
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.3)		ND (<1.3)		ND (<1.2)		ND (<1.3)		ND (<1.3)		ND (<210)	1
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.62)		ND (<0.60)		6.4		ND (<0.61)		ND (<0.60)		ND (<99)	
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.1)		ND (<1.1)		ND (<1.0)		ND (<1.1)		ND (<1.1)		ND (<180)	
m- & p-Xylenes	3,300	15,000	μg/m ³	19		5.5		18		10		ND (<1.1)		ND (<180)	
o-Xylene	3,300	15,000	μg/m ³	9.4		ND (<1.1)		7.4		4.7		ND (<1.2)		ND (<190)	
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³			570		570		2,000		610		ND (<72,000)	

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 10 of 11)

			ation ID		/M-2		/M-3
		Sampling Da			021 14:12	07/29/2	021 12:55
		Sample Dept	` ,		5		4
			le Type		N	0.0.0	N
		Field Sa			/M2A-01		/M3A-01
		Lab Sa	שו mpie Status		684-03A idated		684-05A idated
		Commercial/	Status	Vali	uateu	Vali	uaieu
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Pocult	QA Reason	Pocult	QA Reaso
Acetone	1,100,000	4,700,000	μg/m ³	160	QA Iteason	ND (<2.5)	QA INCASO
Benzene	3.2	14	μg/m ³	ND (<0.66)		ND (<0.63)	
Bromodichloromethane (BDCM)	2.5	11	μg/m ³	ND (<0.00)		ND (<0.03)	
tert-Butyl Alcohol (TBA)	NE	NE	μg/m ³	ND (<1.1)		ND (<0.88)	
Carbon Disulfide			μg/m ³				
Chloroform	24,000 4.0	100,000 18		ND (<1.3)		ND (<1.3)	
	14,000	60,000	μg/m ³	ND (<0.46)		ND (<0.44)	
Cumene (Isopropylbenzene)	,	,	μg/m ³	ND (<0.68)		ND (<0.65)	
Cyclohexane	210,000	870,000	μg/m ³	ND (<0.62)		ND (<0.59)	
Dichlorodifluoromethane (Freon 12)	3,300	15,000	μg/m ³	ND (<0.86)		ND (<0.82)	
cis-1,2-Dichloroethene (cDCE)	280	1,200	μg/m ³	ND (<1.6)		ND (<1.5)	
1,2-Dichloropropane	25	110	μg/m ³	ND (<1.2)		ND (<1.2)	
Ethanol	NE	NE	μg/m ³	ND (<2.6)		ND (<2.4)	
Ethylbenzene	37	160	μg/m ³	ND (<1.2)		ND (<1.2)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.1)		ND (<1.0)	
n-Heptane	14,000	60,000	μg/m ³	ND (<1.1)		ND (<1.0)	
Hexane	24,000	100,000	μg/m ³	ND (<0.70)		ND (<0.68)	
2-Hexanone	1,000	4,300	μg/m ³	ND (<0.43)		ND (<0.41)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.60)		ND (<0.58)	
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	29		ND (<0.77)	
Methyl Ethyl Ketone (2-Butanone)	170,000	730,000	μg/m³	ND (<2.0)		ND (<1.9)	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	100,000	430,000	μg/m³	ND (<1.1)		ND (<1.0)	
Methyl tert-Butyl Ether (MTBE)	370	1,600	μg/m ³	ND (<0.85)		ND (<0.81)	
Propylbenzene	33,000	150,000	μg/m³	ND (<0.89)		ND (<0.86)	
Propylene	100,000	430,000	μg/m ³	40		ND (<0.53)	
Tetrachloroethene (PCE)	15	67	μg/m ³	96		590	
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.65)		ND (<0.63)	
Toluene	10,000	43,000	μg/m ³	ND (<0.42)		ND (<0.41)	
1,1,1-Trichloroethane	33,000	150,000	μg/m ³	ND (<0.47)		ND (<0.45)	
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.85)		ND (<0.81)	
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.3)		ND (<1.3)	
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.62)		ND (<0.60)	
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.1)		ND (<1.1)	
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<1.1)		ND (<1.0)	
o-Xylene	3,300	15,000	μg/m ³	ND (<1.2)		ND (<1.1)	
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<450)		ND (<430)	

TABLE 4-3. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 11 of 11)

Notes:

Only analytes detected in one or more samples are shown. Results for leak-check compound 1,1-difluoroethane are presented in Appendix C.

Analytes detected above one or both SVSLs are shown in **bold**.

Concentrations detected above the laboratory MDL are shown in **bold**.

For non-detects, the value in parentheses corresponds to the laboratory MDL.

Sample depths are referenced to the top of soil (bottom of pavement).

Concentration exceeds residential SVSL.

Concentration exceeds residential and commercial/industrial SVSL.

ND (<MDL) Black inversed cell indicates a non-detect with a laboratory MDL exceeding the commercial/industrial SVSL and/or residential SVSL.

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

(b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air screening levels (SWRCB, 2019) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

< = less than

 $\mu g/m^3$ = micrograms per cubic meter

CalEPA = California Environmental Protection Agency

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

FR = field replicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = estimated result

J- = estimated result; potential low bias

UJ = estimated result; analyte not detected at the indicated value

Data Validation Reason Code Definitions:

2A- = Low laboratory control sample recovery

2A+ = High laboratory control sample recovery

3D = Field duplicate imprecision

3E = Field replicate imprecision

4D = Leak check compound greater than 10 times the lowest RL; potential leak

5A = Initial calibration did not meet method requirement

5B- = Low continuing calibration recovery

5F = Estimated concentration. Potential concerns for the measurement of acrolein using Method TO-15.

6E = Detected above the calibration range

6G = Reported between the laboratory MDL and RL

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 1 of 11)

				· .					
			ation ID		VW17A	VW18A	VW19A	VW20A	VW21A
		Sampling Da		07/15/2021 08:30	08/16/2021 10:31	07/15/2021 09:12	07/13/2021 07:23	08/17/2021 07:07	08/30/2021 10:59
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5
			le Type		N	N	N	N	N
		Field Sa		SG-VW16A-02	SG-VW17A-03	SG-VW18A-02	SG-VW19A-02	SG-VW20A-03	SG-VW21A-05
		Lab Sa	-	2107361-06A	2108390-03A	2107361-07A	2107282-05A	2108390-13A	2108676A-01A
		Commoraial/	Status	Validated	Validated	Validated	Validated	Validated	Validated
Analyta	Residential SVSL ^(a)	Commercial/ Industrial SVSL ^(a)	l limita	D	Dth OA D	B th OA B	BH OA B	D	BH OA B
Analyte			Units 3	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Acetone	32,000,000	140,000,000	μg/m ³	37	ND (<2.4)	27	ND (<2.4)	ND (<2.3)	32 J- 4D,3E
Benzene	97	420	μg/m ³	ND (<0.63)	ND (<0.61)	ND (<0.63)	ND (<0.61)	ND (<0.60)	3.1 J- 4D,6G
Bromodichloromethane (BDCM)	76	330	μg/m³	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<0.99)	ND (<1.1) UJ 4D
tert-Butyl Alcohol (TBA)	NE	NE	μg/m³	ND (<0.88)	ND (<0.85)	ND (<0.88)	ND (<0.85)	ND (<0.83)	ND (<0.92) UJ 4D
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<1.3)	ND (<1.2)	ND (<1.3)	ND (<1.2)	ND (<1.2)	2.9 J- 4D,6G
Chloroform	120	530	μg/m ³	17	190	ND (<0.44)	28	ND (<0.41)	9.1 J- 4D
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.65)	ND (<0.62)	ND (<0.65)	ND (<0.62)	ND (<0.61)	ND (<0.68) UJ 4D
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.59)	9.2	ND (<0.59)	ND (<0.57)	3.4	ND (<0.62) UJ 4D
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<0.82)	ND (<0.79)	ND (<0.82)	54	ND (<0.77)	ND (<0.86) UJ 4D,3E
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m ³	ND (<1.5)	ND (<1.4)	ND (<1.5)	ND (<1.4)	ND (<1.4)	ND (<1.6) UJ 4D
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.2) UJ 4D
Ethanol	NE	NE	μg/m ³	ND (<2.4)	ND (<2.4)	22	ND (<2.4)	22	7.1 J- 4D,6G
Ethylbenzene	1,100	4,900	μg/m ³	ND (<1.2)	9.1	ND (<1.2)	ND (<1.1)	7.0	2.4 J- 4D,6G
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE NE	NE	μg/m ³	ND (<1.0)	5.3	ND (<1.0)	ND (<1.0)	7.3	7.2 J- 4D
n-Heptane	420,000	1,800,000	μg/m ³	ND (<1.0)	ND (<0.99)	ND (<1.0)	ND (<0.99)	ND (<0.97)	ND (<1.1) UJ 4D
Hexane	730,000	3,100,000	μg/m ³	ND (<0.68)	2,400 J 6E	ND (<0.68)	ND (<0.65)	350	52 J- 4D,3E
2-Hexanone	31,000	130,000	μg/m ³	ND (<0.41)	ND (<0.40)	ND (<0.41)	ND (<0.40)	ND (<0.39)	0.72 J- 4D,6G
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.58)	ND (<0.55)	ND (<0.58)	ND (<0.55)	ND (<0.54)	ND (<0.60) UJ 4D
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	ND (<0.77)	13	ND (<0.77)	ND (<0.74)	ND (<0.73)	16 J- 4D,3E
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<1.9)	ND (<1.8)	ND (<1.9)	ND (<1.8)	ND (<1.8)	7.6 J- 4D,6G
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<1.0)	5.4	ND (<1.0)	ND (<0.98)	ND (<0.96)	ND (<1.1) UJ 4D
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.81)	ND (<0.78)	ND (<0.81)	ND (<0.78)	ND (<0.76)	ND (<0.85) UJ 4D
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.86)	ND (<0.82)	ND (<0.86)	ND (<0.82)	ND (<0.81)	1.5 J- 4D,6G
Propylene	3,100,000	13,000,000	μg/m ³	ND (<0.53)	ND (<0.51)	ND (<0.53)	ND (<0.51)	ND (<0.50)	ND (<0.56) UJ 4D
Tetrachloroethene (PCE)	460	2,000	μg/m ³	35					` '
, ,	2,100,000	8,800,000	μg/m ³		110 ND (<0.60)	490 ND (<0.63)	380 ND (<0.60)	33 ND (<0.59)	170 J- 4D 1.6 J- 4D.6G
Tetrahydrofuran Toluene	310,000	1,300,000					ND (<0.60)		, , , , , , , , , , , , , , , , , , , ,
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m³ μg/m³	ND (<0.41) ND (<0.45)	5.0 ND (<0.43)	4.8 ND (<0.45)	ND (<0.39)	20 ND (<0.42)	13 J- 4D 6.0 J- 4D
	480	3,000					ND (<0.43)		
Trichloroethene (TCE)			μg/m ³	ND (<0.81)	ND (<0.78)	ND (<0.81)	ND (<0.78)	ND (<0.77)	·
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.3)	ND (<1.2)	ND (<1.3)	9.2	ND (<1.2)	1.8 J- 4D
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.60)	7.7	ND (<0.60)	ND (<0.57)	7.7	8.5 J- 4D,2A+
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.1)	ND (<1.0)	ND (<1.1)	ND (<1.0)	ND (<1.0)	3.8 J- 4D,6G
m- & p-Xylenes	100,000	440,000	μg/m ³	ND (<1.0)	38	ND (<1.0)	ND (<1.0)	28	6.5 J- 4D
o-Xylene	100,000	440,000	μg/m ³	ND (<1.1)	15	ND (<1.1)	ND (<1.1)	9.7	3.1 J- 4D,6G
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m³	ND (<430)	4,100	ND (<430)	ND (<410)	740	ND (<450) UJ 4D,3E

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 2 of 11)

		Loca	ation ID	VW2	1A	VW	22A	\/\/	/24A	\/\	V25A	\/\/	/26A	\ // /	·
															V27A
		Sampling Da		8/30/2021		07/14/20			021 08:25		2021 12:50		021 15:03		021 06:03
		Sample Dept		5.5		5			5.5		5.5		5.5		5.5
			le Type	FR		1	•		N	2010	N		N		N
		Field Sar		SG-VW2			/22A-02		V24A-05		W25A-02		V26A-02		N27A-02
		Lab Sai	-	2108676			84-24A		90-15A		282-11A		11A-21A		361-02A
-	I	Commercial/	Status	Valida	tea	valid	lated	valie	dated	vai	idated	valie	dated	vali	idated
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Booult OA	A Reason	Popult	QA Reason	Popult	QA Reason	Popult	QA Reason	Popult	QA Reason	Booult	QA Reason
Acetone	32,000,000	140,000,000	μg/m ³	18 J-	4D,6G,3E		QA Reason	25	QA Reason	34	1	ND (<2.5)	QA Reason	ND (<2.5)	QA Reason
_	·	·	μg/m ³	+		ND (<0.26)								` ′	1
Benzene Bromodichloromethane (BDCM)	97 76	420 330			4D,6G	 		ND (<0.61)		ND (<0.74)		ND (<0.63)		ND (<0.64)	
, ,		NE	μg/m ³	ND (<1.4) UJ		ND (<1.4)		ND (<1.0)		ND (<1.2)		ND (<1.0)		ND (<1.1)	
tert-Butyl Alcohol (TBA)	NE 700,000		μg/m ³	ND (<1.2) UJ		ND (<1.2)		ND (<0.85)		ND (<1.0)		ND (<0.88)		ND (<0.90)	
Carbon Disulfide	730,000	3,100,000	μg/m ³		4D,6G	ND (<3.2)		15		ND (<1.5))	ND (<1.3)		ND (<1.3)	<u> </u>
Chloroform	120	530	μg/m ³	8.6 J-	4D	12		ND (<0.42)		ND (<0.51)		ND (<0.44)		ND (<0.45)	<u> </u>
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.70) UJ		ND (<0.68)		ND (<0.62)		ND (<0.76))	ND (<0.65)		ND (<0.66)	 '
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.82) UJ		ND (<0.80)		3.7		ND (<0.69)		ND (<0.59)		ND (<0.61)	<u> </u>
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³		4D,3E	ND (<0.97)		7.8		8.8		ND (<0.82)		ND (<0.84)	 '
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m³	ND (<0.79) UJ		ND (<0.78)		ND (<1.4)		ND (<1.8)		ND (<1.5)		ND (<1.5)	<u> </u>
1,2-Dichloropropane	760	3,300	μg/m³	ND (<1.7) UJ	4D	ND (<1.7)	UJ 5A	ND (<1.1)		ND (<1.4))	ND (<1.2)	UJ 5A	ND (<1.2)	<u> </u>
Ethanol	NE	NE	μg/m ³	4.6 J-	4D,6G	ND (<2.2)		22		ND (<2.8))	ND (<2.4)		ND (<2.5)	'
Ethylbenzene	1,100	4,900	μg/m ³	1.9 J-	4D,6G	6.5		6.9		15		ND (<1.2)		ND (<1.2)	<u> </u>
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	7.1 J-	4D	13		7.1		18	1	5.7		ND (<1.1)	<u> </u>
n-Heptane	420,000	1,800,000	μg/m³	ND (<0.81) UJ	4D	ND (<0.80)		ND (<0.99)		ND (<1.2)		ND (<1.0)		ND (<1.0)	<u> </u>
Hexane	730,000	3,100,000	μg/m³	31 J-	4D,3E	ND (<0.71)		270		ND (<0.79)		ND (<0.68)		8.7	<u> </u>
2-Hexanone	31,000	130,000	μg/m ³	ND (<1.5) UJ	4D	ND (<1.5)		ND (<0.40)		ND (<0.48)		ND (<0.41)		ND (<0.42)	1 '
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.40) UJ	4D	ND (<0.39)		ND (<0.55)		ND (<0.67)		ND (<0.58)		ND (<0.59)	[
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	8.7 J-	4D,6G,3E	11	J 6G	13		ND (<0.90)		12		ND (<0.79)	[
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	4.9 J-	4D,6G	ND (<2.3)		ND (<1.8)		ND (<2.2)		ND (<1.9)		ND (<1.9)	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<0.68) UJ	4D	ND (<0.67)		ND (<0.98)		ND (<1.2)		ND (<1.0)		ND (<1.0)	1
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.98) UJ	4D	ND (<0.96)		ND (<0.78)		ND (<0.95)		ND (<0.81)		ND (<0.83)	1
Propylbenzene	990,000	4,500,000	μg/m ³	1.6 J-		ND (<0.30)		ND (<0.82)		ND (<1.0)		ND (<0.86)		ND (<0.87)	
Propylene	3,100,000	13,000,000	μg/m ³	ND (<1.4) UJ	4D	ND (<1.4)		ND (<0.51)		ND (<0.62)		ND (<0.53)		ND (<0.54)	
Tetrachloroethene (PCE)	460	2,000	μg/m ³	150 J-		110		260		130)	55		23	1
Tetrahydrofuran	2,100,000	8,800,000				ND (<0.70)		ND (<0.60)		ND (<0.73)		ND (<0.63)		ND (<0.64)	
Toluene	310,000	1,300,000	μg/m ³	12 J-		26		16		49		15		7.0	
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³		4D,6G	ND (<0.72)		ND (<0.43)		ND (<0.52)	1	ND (<0.45)		ND(<0.46)	
Trichloroethene (TCE)	480	3,000	μg/m ³	20 J-		6.7		10		ND (<0.95)		ND (<0.81)		ND (<0.83)	
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³		4D,6G	ND (<0.70)		ND (<1.2)		ND (<1.5)		ND (<1.3)		ND (<1.3)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	9.2 J-		16		7.1		14		ND (<0.60)		ND (<0.61)	
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³		4D,6G	ND (<0.83)		ND (<1.0)		ND (<1.2)	1	ND (<1.1)		ND (<1.1)	
m- & p-Xylenes	100,000	440,000	μg/m ³	7.4 J-		18		26		56		8.2		ND (<1.1)	
o-Xylene	100,000	440,000	μg/m ³		4D,6G	10		9.2		19		5.9		ND (<1.1)	
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	530 J-	•	ND (<440)		650		ND (<500)	1	ND (<430)		ND (<1.2)	

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 3 of 11)

Analyte F	Residential SVSL ^(a)	Sampling Da Sample Dept Samp Field Sar Lab Sar	th (feet) le Type mple ID mple ID	VW28A 07/15/2021 15:31 5.5 N SG-VW28A-02	VW29A 08/17/2021 09:04 5.5 N	VW30A 07/15/2021 08:17 5.5 N	VW31A 07/09/2021 13:34 5.5	VW32A 07/12/2021 11:26 5.5	VW33A 07/14/2021 12:18 5.5
Analyte	Davidantial OVO (a)	Sample Dept Samp Field Sar Lab Sar	th (feet) le Type mple ID mple ID	5.5 N SG-VW28A-02	5.5 N	5.5			
Analyte	Davidantial OVO (a)	Samp Field Sai Lab Sai	le Type mple ID mple ID	N SG-VW28A-02	N		5.5	5.5	5.5
Analyte	Desidential OVO (a)	Field Sar Lab Sar	mple ID mple ID	SG-VW28A-02		N			
Analyte	Desidential OVO (a)	Lab Sai	mple ID			• •	N	N	N
Analyte	Di_t O_(O_(a)		-		SG-VW29A-03	SG-VW30A-03	SG-VW31A-02	SG-VW32A-03	SG-VW33A-02
Analyte	D: t: - 1		C+-+··-	2107361-12A	2108390-16A	2107362A-04A	2107241A-18A	2107260A-02A	2107284-11A
Analyte	D:-I4:I O) (O) (a)	Commorcial/	Status	Validated	Validated	Validated	Validated	Validated	Validated
		Commercial/ Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason
Acetone	32,000,000	140,000,000	μg/m ³	33	ND (<2.5)	37	36	ND (<2.4)	35
_	· · · · · · · · · · · · · · · · · · ·	420	μg/m ³		` '		+ +		
Benzene Bromodichleromethana (BDCM)	97 76	330		ND (<0.71)	ND (<0.64)	ND (<0.37)	ND (<0.66)	ND (<0.34)	ND (<0.30)
Bromodichloromethane (BDCM)			μg/m ³	ND (<1.2)	ND (<1.1)	43	ND (<1.1)	ND (<1.8)	ND (<1.6)
tert-Butyl Alcohol (TBA)	NE	NE 0.400.000	μg/m ³	ND (<0.98)	ND (<0.90)	ND (<1.7)	ND (<0.92)	ND (<1.6)	ND (<1.4)
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<1.4)	ND (<1.3)	ND (<4.5)	ND (<1.3)	ND (<4.2)	21
Chloroform	120	530	μg/m ³	ND (<0.49)	ND (<0.45)	1,500	ND (<0.46)	ND (<0.83)	ND (<0.73)
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.72)	ND (<0.66)	ND (<0.97)	ND (<0.68)	ND (<0.90)	ND (<0.80)
Cyclohexane	6,300,000	26,000,000	μg/m³	ND (<0.66)	ND (<0.61)	ND (<1.1)	ND (<0.62)	ND (<1.1)	ND (<0.94)
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<0.91)	5.7	11	ND (<0.86)	ND (<1.3)	ND (<1.1)
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m³	ND (<1.7)	ND (<1.5)	ND (<1.1)	ND (<1.6)	ND (<1.0)	ND (<0.91)
1,2-Dichloropropane	760	3,300	μg/m³	ND (<1.3)	ND (<1.2)	ND (<2.4) UJ 5A	ND (<1.2) UJ 5A	ND (<2.2) UJ 5A	ND (<2.0) UJ 5A
Ethanol	NE	NE	μg/m ³	ND (<2.7)	25	ND (<3.2)	ND (<2.6)	ND (<2.9)	ND (<2.6) UJ 2A-
Ethylbenzene	1,100	4,900	μg/m ³	ND (<1.3)	5.7	ND (<1.1)	ND (<1.2)	ND (<1.0)	ND (<0.92)
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m³	ND (<1.2)	6.9	ND (<1.9)	ND (<1.1)	ND (<1.8)	ND (<1.6)
n-Heptane	420,000	1,800,000	μg/m ³	ND (<1.1)	ND (<1.0)	ND (<1.1)	ND (<1.1)	ND (<1.0)	N D(<0.93)
Hexane	730,000	3,100,000	μg/m ³	4.7	240	ND (<1.0)	ND (<0.70)	16	ND (<0.83)
2-Hexanone	31,000	130,000	μg/m³	ND (<0.46)	ND (<0.42)	ND (<2.1)	ND (<0.43)	ND (<2.0)	ND (<1.8)
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.64)	ND (<0.59)	ND (<0.56)	ND (<0.60)	ND (<0.52)	ND (<0.46)
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	13	19	ND (<1.0)	ND (<0.81)	ND (<0.95)	ND (<0.84)
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<2.1)	ND (<1.9)	ND (<3.2)	ND (<2.0)	ND (<3.0)	ND (<2.6)
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<1.1)	ND (<1.0)	ND (<0.95)	ND (<1.1)	ND (<0.88)	ND (<0.78)
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.90)	ND (<0.83)	ND (<1.4)	ND (<0.85)	ND (<1.3)	ND (<1.1)
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.95)	ND (<0.87)	ND (<0.42)	ND (<0.89)	ND (<0.39)	ND (<0.35)
Propylene	3,100,000	13,000,000	μg/m ³	ND (<0.60)	ND (<0.54)	ND (<2.0)	ND (<0.56)	ND (<1.9)	N D(<1.6)
Tetrachloroethene (PCE)	460	2,000	μg/m ³	ND (<1.3)	140	250	170	130	15
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³	ND (<0.70)	ND (<0.64)	ND (<0.98)	ND (<0.65)	ND (<0.92)	ND (<0.81)
Toluene	310,000	1,300,000	μg/m ³	8.2	13	ND (<1.4)	ND (<0.42)	ND (<1.3)	7.5
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.50)	ND(<0.46)	ND (<1.0)	ND (<0.47)	ND (<0.95)	ND (<0.84)
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.91)	ND (<0.83)	ND (<1.0)	ND (<0.85)	ND (<0.97)	ND (<0.86)
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.4)	ND (<1.3)	ND (<0.99)	ND (<1.3)	ND (<0.92)	ND (<0.82)
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.66)	8.1	ND (<2.8)	ND (<0.62)	ND (<2.6)	ND (<2.3)
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<0.97)
m- & p-Xylenes	100,000	440,000	μg/m ³	ND (<1.2)	21	ND (<3.6)	ND (<1.1)	ND (<3.4)	ND (<3.0)
o-Xylene	100,000	440,000	μg/m ³	ND (<1.3)	7.8	ND (<1.8)	ND (<1.2)	ND (<1.7)	ND (<1.5)
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	ND (<480)	490	ND (<630)	ND (<450)	ND (<590)	ND (<520)

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 4 of 11)

Location Description Sempling Dates Part Part Sempling Dates Part Pa	
Sample Type Field Sample ID Sample Type Field Sample ID Sci VIVISAnd 2 SCI-VIVISAN 2 SCI-VIVISAN 2 SCI-VIVISAN 2 2108390-014 2107280-056 SCI-VIVISAN 2 2107280-056	
Sample Type N Sc-VW34A-02 SC-VW34A-03 SC-VW34A-02 SC-VW34A-03 SC-VW34A-02 SC-VW34A-03 SC-VW34A-0	
Field Sample ID SG-VW36A-02 SG-VW36A-03 SG-VW36A-0	
Lab Sample D 2107284-13A 2107280-40A 2107280-0-7A 2107280-0-7A 2107280-17A 2107280-1	
Study Commercial Commerci	
Commental Nation Commental N	
Analyte	
Acetanne	Posidon
Benzene	
Bromodichloromethane (BDCM) 76 330 µg/m³ ND (<1.4) ND (<1.5) ND	·
Internation NE	
Carbon Disulfide	
Chicoform 120 530 μg/m² ND (<0.65) ND (<0.67) ND (<0.65) ND (<0.65) ND (<0.66) ND (<0.66) ND (<0.65) ND (<0.65) ND (<0.68) ND (<0.68	
Cumene (Isopropylbenzene) 420,000 1,800,000 µg/m³ ND (<0.73) ND (<0.65) ND (<0.72) ND (<0.65) ND (<0.72) ND (<0.65) ND (<0.72) ND (<0.65) ND (<0.72) ND (<0.73) ND (<0.72) ND (<0.73) ND (<0.72) ND (<0.73) ND (<0.73) ND (<0.74) ND (<0.72) ND (<0.74) ND (<0.73) ND (<0.74) ND (<0.74) ND (<0.74) ND (<0.84) 1,2 Dichloroptopate 760 3,300 µg/m³ ND (<0.81) ND (<0.83) ND (<1.5) ND (<0.82) ND (<0.74) ND (<0.84) ND (<0.82) ND (<0.74) ND (<0.84) ND (<0.82) ND (<0.84) ND (<0.82) ND (<0.84) ND (<0.82) ND (<0.84) ND (<0.82) ND (<0.84) ND (<0.84) ND (<0.84) ND (<0.84) ND (<0.84) ND (<0.84	
Cyclohexane 6,300,000 26,000,000 μg/m³ ND (<0.85) ND (<0.86) 24 ND (<0.84) 34 ND (<0.86) Dichlorodiflutormethane (Freen 12) 100,000 440,000 μg/m³ ND (<1.0) ND (<1.0) ND (<0.82) ND (<1.0) ND (<0.82) ND (<1.0) ND (<0.92) N	
Dichlorodiffluoromethane (Freon 12) 100,000 440,000 19g/m³ ND (<0.81) ND (<0.83) ND (<0.82) ND (<0.82) ND (<0.82) ND (<0.92) ND (<0.94) ND (<0.92) ND (<0.94) ND (<0.93) N	
cis -1,2-Dichloroethene (cDCE) 8,300 35,000 μg/m³ ND (<0.81) ND (<0.83) ND (<0.82) ND (<0.74) ND (<0.84) 1,2-Dichloropropane 760 3,300 μg/m³ ND (<1.8) UJ 5A ND (<1.2) ND (<1.8) UJ 5A ND (<1.4) ND (<2.4) ND (<2.4) ND (<2.3) ND (<1.4) ND (<2.4) ND (<2.3) ND (<1.4) ND (<2.4) ND (<2.3) ND (<0.83) 49 ND (<2.4) ND (<0.85) ND (<0.85) ND (<0.85) ND (<0.41) ND (<0.83) 49 ND (<0.44) ND (<0.41) ND (<0.83) ND (<0.41) ND (<0.41) ND (<0.85) ND (<0.41)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ethanol NE NE μg/m³ ND (<2.3) UJ 2A- ND (<2.4) ND (<2.3) ND (<2.1) ND (<2.4) Ethylbenzene 1,100 4,900 μg/m³ ND (<0.82)	
Ethylbenzene	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
n-Heptane $420,000$ $1,800,000$ $\mu g/m^3$ $ND (<0.83)$ $ND (<1.0)$ $ND (<0.83)$ 34 $ND (<0.86)$ Hexane $730,000$ $3,100,000$ $\mu g/m^3$ $ND (<0.74)$ $ND (<0.76)$ $4,300$ J 6E $ND (<0.74)$ 26 $ND (<0.76)$ 2-Hexanone $31,000$ $130,000$ $\mu g/m^3$ $ND (<1.6)$ $ND (<0.41)$ $ND (<1.6)$	
Hexane	ene)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	73
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31
Methyl Ethyl Ketone (2-Butanone) 5,200,000 22,000,000 μg/m³ ND (<2.3) ND (<2.4) ND (<1.9) ND (<2.4) ND (<2.1) ND (<2.4) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) 3,100,000 13,000,000 μg/m³ ND (<0.70)	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) 3,100,000 μg/m³ ND (<0.70) ND (<0.71) 5.1 ND (<0.70) ND (<0.63) ND (<0.72) Methyl tert-Butyl Ether (MTBE) 11,000 47,000 μg/m³ ND (<1.0)	21
Methyl tert-Butyl Ether (MTBE) 11,000 47,000 $\mu g/m^3$ ND (<1.0) ND (<0.81) ND (<1.0) 38 ND (<1.0) Propylbenzene 990,000 4,500,000 $\mu g/m^3$ ND (<0.31)	5,20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	entanone) 3,10
Propylbenzene 990,000 4,500,000 μg/m³ ND (<0.31) ND (<0.86) ND (<0.31) 8.8 ND (<0.32) Propylene 3,100,000 13,000,000 μg/m³ ND (<1.5)	11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99
Tetrachloroethene (PCE) 460 2,000 μg/m³ 21 21 400 230 ND (<1.2) 130 Tetrahydrofuran 2,100,000 8,800,000 μg/m³ ND (<0.72)	
1,1,1-Trichloroethane 1,000,000 4,400,000 μg/m³ ND (<0.74) ND (<0.76) ND (<0.45) ND (<0.75) ND (<0.68) ND (<0.77)	
1	
Trichlorofluoromethane (Freon 11) 1,300,000 5,300,000 μ g/m ³ ND (<0.73) ND (<0.75) ND (<0.74) ND (<0.74) ND (<0.75)	
1,2,4-Trimethylbenzene 63,000 260,000 μ g/m³ ND (<2.1) 7.0 ND (<2.1) 30 ND (<2.1)	
1,3,5-Trimethylbenzene 63,000 260,000 µg/m³ ND (<0.86) ND (<0.88) ND (<0.87) 12 ND (<0.89)	
m - & p -Xylenes 100,000 440,000 μ g/m ND (<2.8) 170 ND (<2.8) 170 ND (<2.8)	
0-Xylene 100,000 440,000 μg/m³ ND (<1.3) ND (<1.3) 18 ND (<1.3) 49 ND (<1.4)	
TPH - Gasoline 600,000 ^(b) 2,500,000 ^(b) µg/m³ ND (<460) ND (<470) 7,800 ND (<470) 3,100 ND (<480)	

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 5 of 11)

			ation ID		VW39A	VW40A	VW41A	VW42A	VW42A	
		Sampling Da			07/14/2021 09:16	07/13/2021 07:46	07/13/2021 10:30	07/13/2021 11:56	07/13/2021 11:56	
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5	
			le Type	FD	N OO MAYOOA OO	N OO MMAAA AA	N 00) 0444 A 00	N	FD	
		Field Sa Lab Sa		SG-VW38A-03 2107284-08A	SG-VW39A-02 2107284-05A	SG-VW40A-02 2107260A-14A	SG-VW41A-03 2107260A-19A	SG-VW42A-03 2107260A-21A	SG-VW42A-04 2107260A-22A	
		Lau Sa	Status	Validated	Validated	Validated	Validated	Validated	Validated	
		Commercial/	Otatus	vandated	Validated	validated	Validated	validated	validated	
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	
Acetone	32,000,000	140,000,000	μg/m ³	31	ND (<1.8)	ND (<1.7)	ND (<1.7)	ND (<1.8)	ND (<1.8)	
Benzene	97	420	μg/m ³	ND (<0.28)	ND (<0.25)	ND (<0.24)	ND (<0.24)	ND (<0.26)	ND (<0.25)	
Bromodichloromethane (BDCM)	76	330	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.4)	ND (<1.4)	
tert-Butyl Alcohol (TBA)	NE	NE NE	μg/m ³	ND (<1.3)	ND (<1.1)	ND (<1.1)	ND (<1.1)	ND (<1.2)	ND (<1.2)	
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<3.4)	ND (<3.0)	ND (<2.9)	ND (<3.0)	ND (<3.1)	ND (<3.1)	
Chloroform	120	530	μg/m ³	ND (<0.67)	ND (<0.60)	ND (<0.58)	ND (<0.58)	ND (<0.62)	ND (<0.61)	
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.73)	ND (<0.65)	ND (<0.63)	ND (<0.63)	ND (<0.67)	ND (<0.66)	
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.86)	ND (<0.76)	ND (<0.74)	ND (<0.75)	ND (<0.79)	ND (<0.78)	
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<1.0)	ND (<0.92)	ND (<0.90)	ND (<0.90)	ND (<0.95)	ND (<0.95)	
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m ³	ND (<0.83)	ND (<0.74)	ND (<0.72)	ND (<0.72)	ND (<0.76)	ND (<0.76)	
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.8) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	
Ethanol	NE	NE	μg/m ³	ND (<2.4) UJ 2A-	ND (<2.1) UJ 2A-	ND (<2.0)	ND (<2.1)	23	ND (<2.2)	
Ethylbenzene	1,100	4,900	μg/m ³	ND (<0.84)	ND (<0.75)	ND (<0.73)	ND (<0.73)	ND (<0.77)	ND (<0.77)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.4)	ND (<1.3)	ND (<1.2)	ND (<1.3)	ND (<1.3)	ND (<1.3)	
n-Heptane	420,000	1,800,000	μg/m ³	ND (<0.85)	ND (<0.75)	ND (<0.74)	ND (<0.74)	ND (<0.78)	ND (<0.78)	
Hexane	730,000	3,100,000	μg/m ³	ND (<0.76)	ND (<0.67)	ND (<0.66)	ND (<0.66)	4.0	ND (<0.69)	
2-Hexanone	31,000	130,000		ND (<1.6)	ND (<0.07)	· · · · · · · · · · · · · · · · · · ·	` '	ND (<1.5)	ND (<0.09)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	` '	ND (<0.37)	ND (<1.4)	ND (<1.4)	` '	· · · · · · · · · · · · · · · · · · ·	
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³ μg/m ³	ND (<0.42)	` ' '	ND (<0.36)	ND (<0.36)	ND (<0.38)	ND (<0.38)	
, , , , , , , , , , , , , , , , , , , ,	·				ND (<0.68)	ND (<0.66)	ND (<0.66)	ND (<0.70)	ND (<0.70)	
Methyl Leghytyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<2.4)	ND (<2.1)	ND (<2.1)	ND (<2.1)	ND (<2.2)	ND (<2.2)	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<0.71)	ND (<0.63)	ND (<0.62)	ND (<0.62)	ND (<0.66)	ND (<0.65)	
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<1.0)	ND (<0.91)	ND (<0.89)	ND (<0.89)	ND (<0.94)	ND (<0.94)	
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.32)	ND (<0.28)	ND (<0.28)	ND (<0.28)	ND (<0.29)	ND (<0.29)	
Propylene (POE)	3,100,000	13,000,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<1.3)	ND (<1.4)	ND (<1.4)	
Tetrachloroethene (PCE)	460	2,000	μg/m ³	120 ND (40.74)	22	14 ND (40.04)	37 ND (10.04)	31 ND (10.00)	31 ND (10 00)	
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³		ND (<0.66)	ND (<0.64)	ND (<0.64)	ND (<0.68)	ND (<0.68)	
Toluene	310,000	1,300,000	μg/m ³	ND (<1.0)	ND (<0.94)	ND (<0.92)	ND (<0.92)	ND (<0.97)	ND (<0.97)	
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.76)	ND (<0.68)	ND (<0.66)	ND (<0.67)	ND (<0.70)	ND (<0.70)	
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.78)	ND (<0.70)	ND (<0.68)	ND (<0.68)	ND (<0.72)	ND (<0.72)	
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m³	ND (<0.75)	ND (<0.66)	ND (<0.65)	ND (<0.65)	ND (<0.69)	ND (<0.68)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m³	ND (<2.1)	ND (<1.9)	ND (<1.8)	ND (<1.8)	ND (<1.9)	ND (<1.9)	
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.88)	ND (<0.79)	ND (<0.77)	ND (<0.77)	ND (<0.81)	ND (<0.81)	
m- & p-Xylenes	100,000	440,000	μg/m³	ND (<2.8)	ND (<2.4)	ND (<2.4)	ND (<2.4)	ND (<2.5)	ND (<2.5)	
o-Xylene	100,000	440,000	μg/m ³	ND (<1.3)	ND (<1.2)	ND (<1.2)	ND (<1.2)	ND (<1.2)	ND (<1.2)	
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m³	ND (<470)	ND (<420)	ND (<410)	ND (<410)	ND (<440)	ND (<430)	

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 6 of 11)

		Loc	ation ID			VW45A	VW46A	VW47A	VW47A	
		Sampling Da			08/16/2021 09:53	07/08/2021 13:58	07/08/2021 15:38	07/08/2021 18:54	07/08/2021 18:54	
		Sample Dep			5.5	5.5	5.5	5.5	5.5 FD	
			le Type		N	N	N	N		
			mple ID		SG-VW44A-03	SG-VW45A-03	SG-VW46A-02	SG-VW47A-02	SG-VW47A-03	
		Lab Sa	-		2108390-02A	2107241A-03A	2107241A-05A	2107241A-09A	2107241A-10A	
	Ī	Commercial/	Status	Validated	Validated	Validated	Validated	Validated	Validated	
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason						
Acetone	32,000,000	140,000,000	μg/m ³	130	ND (<2.5)	69	52	46	35	
_		420	μg/m ³	1.1	` '					
Benzene Bramadiahlaramathana (RDCM)	97 76	330		ND (<0.74)	ND (<0.64)	ND (<0.68)	ND (<0.26)	ND (<0.26)	ND (<0.26)	
Bromodichloromethane (BDCM)			μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.4)	ND (<1.4)	ND (<1.4)	
tert-Butyl Alcohol (TBA)	NE 700.000	NE 0.400.000	μg/m ³	ND (<1.0)	ND (<0.90)	ND (<0.94)	ND (<1.2)	38 J 3D	ND (<1.2) UJ 3D	
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.4)	ND (<3.2)	ND (<3.2)	ND (<3.2)	
Chloroform	120	530	μg/m ³	ND (<0.52)	35	ND (<0.47)	ND (<0.64)	ND (<0.63)	ND (<0.63)	
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.76)	ND (<0.66)	ND (<0.69)	ND (<0.69)	ND (<0.68)	ND (<0.68)	
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.70)	3.9	ND (<0.63)	ND (<0.81)	ND (<0.96)	ND (<0.96)	
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<0.96)	ND (<0.84)	ND (<0.88)	ND (<0.98)	ND (<0.97)	ND (<0.97)	
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m³	ND (<1.8)	ND (<1.5)	ND (<1.6)	ND (<0.79)	ND (<0.78)	ND (<0.78)	
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.4)	ND (<1.2)	ND (<1.2)	ND (<1.7) UJ 5A	ND (<1.7) UJ 5A	ND (<1.7) UJ 5A	
Ethanol	NE	NE	μg/m ³	24	ND (<2.5)	ND (<2.6)	ND (<2.2)	ND (<2.2)	ND (<2.2)	
Ethylbenzene	1,100	4,900	μg/m ³	ND (<1.4)	16	ND (<1.3)	ND (<0.80)	ND (<0.79)	ND (<0.79)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.2)	5.7	ND (<1.1)	ND (<1.4)	ND (<1.4)	ND (<1.4)	
n-Heptane	420,000	1,800,000	μg/m ³	ND (<1.2)	ND (<1.0)	ND (<1.1)	ND (<0.96)	ND (<0.96)	ND (<0.79)	
Hexane	730,000	3,100,000	μg/m ³	ND (<0.96)	890	ND (<0.72)	ND (<0.72)	ND (<0.71)	ND (<0.71)	
2-Hexanone	31,000	130,000	μg/m ³	ND (<0.48)	ND (<0.42)	ND (<0.44)	ND (<1.5)	ND (<1.5)	ND (<1.5)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.68)	ND (<0.59)	ND (<0.61)	ND (<0.40)	ND (<0.39)	ND (<0.39)	
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	92	ND (<0.79)	25	14	27 J 3D	ND (<0.72) UJ 3D	
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<2.2)	ND (<1.9)	ND (<2.0)	ND (<2.3)	ND (<2.3)	ND (<2.2)	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<1.2)	7.2	ND (<1.1)	ND (<0.68)	ND (<0.67)	ND (<0.67)	
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.96)	ND (<0.83)	ND (<0.87)	ND (<0.97)	ND (<0.96)	ND (<0.96)	
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<1.0)	ND (<0.87)	ND (<0.91)	ND (<0.30)	ND (<0.30)	ND (<0.30)	
Propylene	3,100,000	13,000,000	μg/m ³	10	ND (<0.54)	9.8	ND (<1.4)	ND (<1.4)	ND (<1.4)	
Tetrachloroethene (PCE)	460	2,000	μg/m ³	11	11	11	20	27	27	
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³	ND (<0.74)	ND (<0.64)	ND (<0.67)	ND (<0.70)	ND (<0.70)	ND (<0.69)	
Toluene	310,000	1,300,000	μg/m ³	ND (<0.48)	6.7	ND (<0.44)	ND (<1.0)	ND (<0.99)	ND (<0.99)	
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.53)	ND (<0.46)	ND (<0.48)	ND (<0.72)	ND (<0.72)	ND (<0.72)	
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.96)	ND (<0.83)	7.8	ND (<0.74)	ND (<0.74)	ND (<0.73)	
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.5)	ND (<1.3)	ND (<1.3)	ND (<0.71)	ND (<0.70)	ND (<0.70)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.70)	8.7	ND (<0.64)	ND (<2.0)	ND (<2.0)	ND (<2.0)	
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.3)	ND (<1.1)	ND (<1.1)	ND (<0.84)	ND (<0.83)	ND (<0.83)	
m- & p-Xylenes	100,000	440,000	μg/m ³	ND (<1.2)	56	ND (<1.1)	ND (<2.6)	6.2	ND (<2.6)	
o-Xylene	100,000	440,000	μg/m ³	ND (<1.3)	20	ND (<1.2)	ND (<1.3)	ND (<1.3)	ND (<1.2)	
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	ND (<500)	1,900	ND (<460)	ND (<450)	ND (<440)	ND (<440)	

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 7 of 11)

				`						
		Loc	ation ID	VW48A	VW49A	VW50A	VW51A	VW52A	VW53A	
		Sampling Da			07/09/2021 08:43	07/09/2021 10:19	07/12/2021 14:28	07/13/2021 09:04	07/13/2021 10:53	
		Sample Dep			5.5	5.5	5.5	5.5	5.5	
			le Type		N	N	N	N	N	
			mple ID		SG-VW49A-03	SG-VW50A-03	SG-VW51A-02	SG-VW52A-02	SG-VW53A-03	
		Lab Sa			2107241A-14A	2107241A-16A	2107260A-07A	2107282-07A	2107282-09A	
	T	Commercial/	Status	Validated	Validated	Validated	Validated	Validated	Validated	
Analyta	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	
Analyte	32,000,000	140,000,000	μg/m ³	64	Kesuit QA Reason					
Acetone					· · · · · · · · · · · · · · · · · · ·	ND (<2.5)	ND (<2.0)	53 ND (+0.05)	160	
Benzene	97	420	μg/m ³	ND (<0.25)	ND (<0.61)	ND (<0.64)	ND (<0.28)	ND (<0.65)	7.4	
Bromodichloromethane (BDCM)	76	330	μg/m³	ND (<1.3)	ND (<1.0)	ND (<1.0)	ND (<1.5)	ND (<1.1)	ND (<1.1)	
tert-Butyl Alcohol (TBA)	NE	NE	μg/m ³	ND (<1.2)	ND (<0.85)	ND (<0.88)	ND (<1.3)	ND (<0.91)	26	
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<3.0)	ND (<1.2)	ND (<1.3)	ND (<3.4)	ND (<1.3)	ND (<1.3)	
Chloroform	120	530	μg/m ³	6.8	6.3	ND (<0.44)	ND (<0.67)	18	ND (<0.46)	
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.66)	5.5	ND (<0.65)	ND (<0.73)	ND (<0.67)	ND (<0.68)	
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.77)	ND (<0.58)	ND (<0.60)	ND (<0.86)	ND (<0.61)	ND (<0.62)	
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<0.93)	ND (<0.79)	ND (<0.82)	ND (<1.0)	45	24	
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m ³	ND (<0.75)	ND (<1.4)	ND (<1.5)	ND (<0.83)	ND (<1.6)	ND (<1.6)	
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.6) UJ 5A	ND (<1.1) UJ 5A	ND (<1.2) UJ 5A	ND (<1.8) UJ 5A	ND (<1.2)	ND (<1.2)	
Ethanol	NE	NE	μg/m ³	ND (<2.1)	ND (<2.4)	ND (<2.5)	ND (<2.4)	ND (<2.5)	ND (<2.6)	
Ethylbenzene	1,100	4,900	μg/m ³	ND (<0.76)	ND (<1.2)	ND (<1.2)	ND (<0.84)	ND (<1.2)	ND (<1.2)	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.3)	ND (<1.0)	ND (<1.0)	ND (<1.4)	ND (<1.1)	ND (<1.1)	
n-Heptane	420,000	1,800,000	μg/m ³	ND (<0.76)	ND (<1.0)	ND (<1.0)	ND (<0.85)	ND (<1.1)	ND (<1.1)	
Hexane	730,000	3,100,000	μg/m ³	ND (<0.68)	ND (<0.65)	ND (<0.68)	ND (<0.76)	ND (<0.70)	ND (<0.70)	
2-Hexanone	31,000	130,000	μg/m ³	ND (<1.4)	ND (<0.40)	ND (<0.42)	ND (<1.6)	ND (<0.43)	ND (<0.43)	
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.38)	ND (<0.56)	ND (<0.58)	ND (<0.42)	ND (<0.60)	ND (<0.60)	
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	57	22	ND (<0.78)	12	ND (<0.80)	ND (<0.81)	
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<2.2)	ND (<1.8)	ND (<1.9)	ND (<2.4)	ND (<1.9)	26	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<0.64)	ND (<0.99)	ND (<1.0)	ND (<0.71)	ND (<1.0)	ND (<1.1)	
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.92)	ND (<0.78)	ND (<0.82)	ND (<1.0)	ND (<0.84)	ND (<0.85)	
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.29)	ND (<0.83)	ND (<0.86)	ND (<0.32)	ND (<0.88)	ND (<0.89)	
Propylene	3,100,000	13,000,000	μg/m ³	ND (<1.4)	ND (<0.52)	ND (<0.54)	ND (<1.5)	ND (<0.55)	ND (<0.56)	
Tetrachloroethene (PCE)	460	2,000	μg/m ³	95	140	310	120	240	91	
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³		ND (<0.60)	ND (<0.63)	ND (<0.74)	ND (<0.65)	ND (<0.65)	
Toluene	310,000	1,300,000	μg/m ³	ND (<0.95)	ND (<0.39)	ND (<0.41)	ND (<1.0)	ND (<0.42)	ND (<0.42)	
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.69)	ND (<0.43)	ND (<0.45)	ND (<0.76)	ND (<0.46)	ND (<0.47)	
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.71)	ND (<0.79)	ND (<0.82)	ND (<0.78)	ND (<0.84)	ND (<0.85)	
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<0.67)	ND (<1.2)	ND (<1.3)	ND (<0.75)	7.8	ND (<1.3)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.07)	ND (<1.2)	ND (<0.60)	ND (<0.73)	ND (<0.62)	ND (<0.62)	
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.9)	ND (<0.38)	ND (<0.00)	ND (<0.88)	ND (<0.02)	ND (<0.02)	
m- & p-Xylenes	100,000	440,000	•					' '		
			μg/m ³	ND (<2.5)	ND (<1.0)	ND (<1.0)	ND (<2.8)	ND (<1.1)	ND (<1.1)	
o-Xylene	100,000 600,000 ^(b)	440,000 2,500,000 ^(b)	μg/m ³	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.3)	ND (<1.2)	ND (<1.2)	
TPH - Gasoline	000,000	2,500,000	μg/m³	ND (<430)	ND (<420)	ND (<430)	ND (<470)	ND (<440)	ND (<450)	

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 8 of 11)

(1 dgc 0 of 11)											
		Loc	ation ID	VW55A	VW56A	VW57A	VW58A	VW59A	VW60A		
		Sampling Da		08/17/2021 06:34	07/14/2021 08:13	07/14/2021 07:07	/14/2021 07:07 08/16/2021 11:13		08/16/2021 12:53		
		Sample Dep		5.5	5.5	5.5	5.5	5.5	5.5		
			le Type	N	N	N	N	N	N		
	Field Sa			SG-VW55A-03	SG-VW56A-02	SG-VW57A-02	SG-VW58A-02	SG-VW59A-02	SG-VW60A-02		
		Lab Sa	-	2108390-12A	2107284-03A	2107284-01A	2108390-04A	2108390-18A	2108390-07A		
	1	Compression!	Status	Validated	Validated	Validated	Validated	Validated	Validated		
A 1. 4	Residential SVSL ^(a)	Commercial/ Industrial SVSL ^(a)	11:4	- "lax -	5 4 04 5						
Analyte			Units 3	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason		
Acetone	32,000,000	140,000,000	μg/m ³	ND (<2.4)	ND (<1.8)	ND (<1.8)	27	ND (<2.4)	ND (<2.4)		
Benzene	97	420	μg/m ³	3.2	ND (<0.25)	ND (<0.25)	ND (<0.66)	ND (<0.61)	4.7		
Bromodichloromethane (BDCM)	76	330	μg/m³	ND (<1.0)	ND (<1.4)	ND (<1.3)	ND (<1.1)	ND (<1.0)	ND (<1.0)		
tert-Butyl Alcohol (TBA)	NE	NE	μg/m³	ND (<0.85)	ND (<1.2)	ND (<1.1)	ND (<0.92)	ND (<0.85)	ND (<0.85)		
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<1.2)	ND (<3.1)	ND (<3.0)	ND (<1.3)	ND (<1.2)	ND (<1.2)		
Chloroform	120	530	μg/m ³	ND (<0.42)	ND (<0.61)	ND (<0.60)	ND (<0.46)	ND (<0.42)	ND (<0.42)		
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.62)	ND (<0.66)	ND (<0.65)	ND (<0.68)	ND (<0.62)	ND (<0.62)		
Cyclohexane	6,300,000	26,000,000	μg/m³	5.4	ND (<0.78)	ND (<0.76)	ND (<0.62)	ND (<0.57)	ND (<0.57)		
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m ³	ND (<0.79)	ND (<0.94)	ND (<0.92)	7.0	7.5	7.7		
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m ³	ND (<1.4)	ND (<0.75)	ND (<0.74)	ND (<1.6)	ND (<1.4)	ND (<1.4)		
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.1)	ND (<1.6) UJ 5A	ND (<1.6) UJ 5A	ND (<1.2)	ND (<1.1)	ND (<1.1)		
Ethanol	NE	NE	μg/m ³	36	ND (<2.2) UJ 2A-	ND (<2.1) UJ 2A-	ND (<2.6)	22	ND (<2.4)		
Ethylbenzene	1,100	4,900	μg/m ³	10	ND (<0.77)	ND (<0.75)	6.9	4.4	ND (<1.1)		
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	10	ND (<1.3)	ND (<1.3)	ND (<1.1)	ND (<1.0)	ND (<1.0)		
n-Heptane	420,000	1,800,000	μg/m ³	ND (<0.99)	ND (<0.77)	ND (<0.76)	ND (<1.1)	ND (<0.99)	ND (<0.99)		
Hexane	730,000	3,100,000	μg/m ³	670	ND (<0.69)	9.5	700	150	420		
2-Hexanone	31,000	130,000	μg/m ³	ND (<0.40)	ND (<1.5)	ND (<1.4)	ND (<0.43)	ND (<0.40)	ND (<0.40)		
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.55)	ND (<0.38)	ND (<0.37)	ND (<0.60)	ND (<0.55)	ND (<0.55)		
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	ND (<0.74)	ND (<0.70)	12	ND (<0.81)	ND (<0.74)	ND (<0.74)		
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<1.8)	ND (<2.2)	ND (<2.2)	ND (<2.0)	ND (<1.8)	ND (<1.8)		
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<0.98)	ND (<0.65)	ND (<0.64)	4.7	ND (<0.98)	ND (<0.98)		
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.78)	ND (<0.93)	ND (<0.91)	ND (<0.85)	ND (<0.78)	ND (<0.78)		
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.82)	ND (<0.29)	ND (<0.28)	ND (<0.89)	ND (<0.82)	ND (<0.82)		
Propylene	3,100,000	13,000,000	μg/m ³	ND (<0.82)	ND (<1.4)	ND (<1.3)	ND (<0.56)	ND (<0.82)	ND (<0.51)		
Tetrachloroethene (PCE)	460	2,000	μg/m ³	ND (<1.1)	31	92	160	100	96		
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³	ND (<0.60)	ND (<0.67)	ND (<0.66)	ND (<0.65)	ND (<0.60)	ND (<0.60)		
Toluene	310,000	1,300,000	μg/m ³	32	ND (<0.96)	ND (<0.94)	9.4	14	7.0		
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.43)	ND (<0.70)	ND (<0.68)	ND (<0.47)	ND (<0.43)	ND (<0.43)		
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.78)	ND (<0.71)	ND (<0.70)	ND (<0.85)	ND (<0.78)	ND (<0.78)		
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.2)	ND (<0.68)	ND (<0.67)	ND (<1.3)	ND (<1.2)	ND (<1.2)		
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	10	ND (<1.9)	ND (<1.9)	ND (<0.62)	ND (<0.57)	ND (<0.57)		
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.0)	ND (<0.80)	ND (<0.79)	ND (<1.1)	ND (<1.0)	ND (<1.0)		
m- & p-Xylenes	100,000	440,000	μg/m ³	40	ND (<2.5)	ND (<2.4)	24	16	9.8		
o-Xylene	100,000	440,000	μg/m ³	14	ND (<1.2)	ND (<1.2)	10	6.1	4.6		
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	1,300	ND (<430)	ND (<420)	1,200	ND (<410)	940		

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 9 of 11)

(1 dgc 0 of 11)													
	Loc	ation ID	VW61A			VW64A		VW65A		VW66A		SVM-1	
	Sampling Da	te/Time	08/16/2021 13:26	08/16/20	21 14:42	08/17/2021 09:38		07/30/2021 09:36		07/30/2021 11:14		07/29/2021 08:10	
			5.5			5.5		5.5		5.5		4	
					•							•	•
		•											
	Lab Sai												
Ī	Commorcial/	Status	validated	valid	atea	vaii	dated	vail	aatea	vali	laatea	valid	ated
Posidontial SVSI (a)		Linita	Dogult OA Doggan	Dogult	OA Bassan	Dogult	OA Bassan	Dogult	Los Bassan	Decult	OA Bassan	Dogult	loa Bassan
				1	QA Reason		QA Reason				QA Reason		QA Reason
	· · · · · · · · · · · · · · · · · · ·					` ′		-					
						, ,							
										` ′		·	
			`	` '		`		` ,		ND (<0.89)		` ′	
· · · · · · · · · · · · · · · · · · ·			`	` `		, ,				14		` ′	
								, ,		` ′		` ,	
· · · · · · · · · · · · · · · · · · ·			` '			` '		` ,		` ′		` ′	
			`			ND (<0.58)				` ′		` ′	
·						12				ND (<0.83)		` /	
	·		ND (<1.6)	` ′		ND (<1.5)		, ,		5.0		53,000	
	·		ND (<1.2)	`		ND (<1.1)		ND (<1.2)		ND (<1.2)		820	
NE	NE	μg/m ³	ND (<2.6)	ND (<2.4)		20		ND (<2.5)		ND (<2.5)		ND (<410)	
1,100		μg/m ³	7.7	ND (<1.2)		5.8		4.8		ND (<1.2)		ND (<200)	
NE	NE	μg/m³	ND (<1.1)	ND (<1.0)		5.6		ND (<1.1)		ND (<1.1)		ND (<170)	
420,000	1,800,000	μg/m ³	ND (<1.1)	ND (<1.0)		ND (<1.0)		19		ND (<1.0)		ND (<170)	1
730,000	3,100,000	μg/m ³	300	190		170		190		100		ND (<110)	1
31,000	130,000	μg/m³	ND (<0.43)	ND (<0.41)		ND (<0.40)		ND (<0.42)		ND (<0.42)		ND (<69)	1
NE	NE	μg/m³	ND (<0.60)	ND (<0.58)		ND (<0.56)		100		42		ND (<96)	ĺ
210,000	880,000	μg/m ³	ND (<0.81)	22		9.9	J 6G	12		ND (<0.78)		ND (<130)	1
5,200,000	22,000,000	μg/m ³	ND (<2.0)	ND (<1.9)		ND (<1.8)		ND (<1.9)		ND (<1.9)		ND (<310)	1
3,100,000	13,000,000	μg/m ³	ND (<1.1)	ND (<1.0)		ND (<1.0)		ND (<1.0)		ND (<1.0)		ND (<170)	
11,000	47,000	μg/m ³	ND (<0.85)	ND (<0.81)		ND (<0.80)		ND (<0.83)		ND (<0.82)		ND (<140)	
990,000	4,500,000		ND (<0.89)	ND (<0.86)		ND (<0.84)		ND (<0.88)		ND (<0.87)		ND (<140)	
· · · · · · · · · · · · · · · · · · ·			` '			` '				` ′			
				14		, ,		96		` ` `		, ,	
	· ·										1	-	
		μα/m ³				16				10			1
													1
		•						-					
													1
		•											
	·												
	NE 420,000 730,000 31,000 NE 210,000 5,200,000 3,100,000	Sampling Da Sample Dep Sample Field Sa Lab Sa Residential SVSL ^(a) Commercial/ Industrial SVSL ^(a) 32,000,000 140,000,000 97 420 76 330 NE NE 730,000 3,100,000 120 530 420,000 1,800,000 6,300,000 26,000,000 100,000 440,000 8,300 35,000 760 3,300 NE NE NE 1,100 4,900 NE NE 420,000 1,800,000 31,000 130,000 31,000 130,000 31,000 130,000 31,000 130,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000 31,000,000 45,00,000 31,00,000 45,00,000 31,00,000 31,000,000 45,00,000 310,000	Residential SVSL	Sampling Date/Time Sample Depth (feet)	Sampling Date/Time Sample Depth (feet) Sample Type Field Sample ID Lab Sample ID Lab Sample ID Status Validated Validated Validated Status Validated Status Validated Validated Status Validated Validated Status Validated Validated Status Validated Status Validated Validated Status Validated Status Validated Validated Status Val	Sample Depth (feet) Sample Depth (feet) Sample Type Field Sample ID Lab Sample ID Salatus S	Sampling Date/Time Sample Depth (feet) Sample Type Field Sample ID Lab Sample ID Status SG-Wr61A-02 SG-Wr61A-02	Sampling Date/Time Sample Depth (feet Sample Depth (feet Sample Type Field Sample ID Lab Sample ID Status SG-VW63A-02 2108390-09A Validated Validat	Sample Deth/Time Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Rest Sample Deth Sam	Sample Depth (lefet) Sample Depth (lefet) Sample Depth (lefet) Sample Type Field Sample ID Sample ID	Sampling Delpth (relpt) Sample Delpth (relpt) Sample Type Sample Type Type Type Type Type Type Type Typ	Sampling Date/Time Sample Depth (Filme Sample Depth (Filme Sample Depth (Filme Sample 10) S.	Sample Date Time Sample Date Time Sample Date D

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR)
(Page 10 of 11)

(1 dgc 10 of 11)											
		Loca	ation ID	S\	/M-2	SVM-3					
		Sampling Da	te/Time	07/29/2	021 14:12	07/29/2	021 12:55				
		Sample Dep			5		4				
		•	le Type		N	N OO OVAAOA OA					
		Field Sa			/M2A-01	SG-SVM3A-01					
		Lab Sa	-		684-03A		684-05A				
	Status				idated	Validated					
	D : 1 (: 1 0) (0) (a)	Commercial/			1		1				
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result			QA Reason				
Acetone	32,000,000	140,000,000	μg/m ³	160		ND (<2.5)					
Benzene	97	420	μg/m ³	ND (<0.66)		ND (<0.63)					
Bromodichloromethane (BDCM)	76	330	μg/m ³	ND (<1.1)		ND (<1.0)					
tert-Butyl Alcohol (TBA)	NE	NE	μg/m ³	ND (<0.92)		ND (<0.88)					
Carbon Disulfide	730,000	3,100,000	μg/m ³	ND (<1.3)		ND (<1.3)					
Chloroform	120	530	μg/m ³	ND (<0.46)		ND (<0.44)					
Cumene (Isopropylbenzene)	420,000	1,800,000	μg/m ³	ND (<0.68)		ND (<0.65)					
Cyclohexane	6,300,000	26,000,000	μg/m ³	ND (<0.62)		ND (<0.59)					
Dichlorodifluoromethane (Freon 12)	100,000	440,000	μg/m³	ND (<0.86)		ND (<0.82)					
cis -1,2-Dichloroethene (cDCE)	8,300	35,000	μg/m ³	ND (<1.6)		ND (<1.5)					
1,2-Dichloropropane	760	3,300	μg/m ³	ND (<1.2)		ND (<1.2)					
Ethanol	NE	NE	μg/m³	ND (<2.6)		ND (<2.4)					
Ethylbenzene	1,100	4,900	μg/m ³	ND (<1.2)		ND (<1.2)					
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m³	ND (<1.1)		ND (<1.0)					
n-Heptane	420,000	1,800,000	μg/m³	ND (<1.1)		ND (<1.0)					
Hexane	730,000	3,100,000	μg/m ³	ND (<0.70)		ND (<0.68)					
2-Hexanone	31,000	130,000	μg/m ³	ND (<0.43)		ND (<0.41)					
Isooctane (2,2,4-Trimethylpentane)	NE	NE	μg/m ³	ND (<0.60)		ND (<0.58)					
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	29		ND (<0.77)					
Methyl Ethyl Ketone (2-Butanone)	5,200,000	22,000,000	μg/m ³	ND (<2.0)		ND (<1.9)					
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3,100,000	13,000,000	μg/m ³	ND (<1.1)		ND (<1.0)					
Methyl tert-Butyl Ether (MTBE)	11,000	47,000	μg/m ³	ND (<0.85)		ND (<0.81)					
Propylbenzene	990,000	4,500,000	μg/m ³	ND (<0.89)		ND (<0.86)					
Propylene	3,100,000	13,000,000	μg/m ³	40		ND (<0.53)					
Tetrachloroethene (PCE)	460	2,000	μg/m ³	96		590					
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³	ND (<0.65)		ND (<0.63)					
Toluene	310,000	1,300,000	μg/m ³	ND (<0.42)		ND (<0.41)					
1,1,1-Trichloroethane	1,000,000	4,400,000	μg/m ³	ND (<0.47)		ND (<0.45)					
Trichloroethene (TCE)	480	3,000	μg/m ³	ND (<0.85)		ND (<0.81)					
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.3)		ND (<1.3)					
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.62)		ND (<0.60)					
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.1)		ND (<1.1)					
m- & p-Xylenes	100,000	440,000	μg/m ³	ND (<1.1)		ND (<1.0)					
o-Xylene	100,000	440,000	μg/m ³	ND (<1.2)		ND (<1.1)					
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	ND (<450)		ND (<430)					

TABLE 4-4. CURRENT INVESTIGATION ANALYTES DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 11 of 11)

Notes:

Only analytes detected in one or more samples are shown. Results for leak-check compound 1,1-difluoroethane are presented in Appendix C.

Analytes detected above one or both SVSLs are shown in **bold**.

Concentrations detected above the laboratory MDL are shown in **bold**.

For non-detects, the value in parentheses corresponds to the laboratory MDL.

Sample depths are referenced to the top of soil (bottom of pavement).

Concentration exceeds residential SVSL.

Concentration exceeds residential and commercial/industrial SVSL.

ND (<MDL) Black inversed cell indicates a non-detect with a laboratory MDL exceeding the commercial/industrial SVSL and/or residential SVSL.

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

(b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air screening levels (SWRCB, 2019) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

< = less than

 $\mu g/m^3$ = micrograms per cubic meter

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

FR = field replicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = estimated result

J- = estimated result; potential low bias

UJ = estimated result; analyte not detected at the indicated value

Data Validation Reason Code Definitions:

2A- = Low laboratory control sample recovery

2A+ = High laboratory control sample recovery

3D = Field duplicate imprecision

3E = Field replicate imprecision

4D = Leak check compound greater than 10 times the lowest RL; potential leak

5A = Initial calibration did not meet method requirement

5B- = Low continuing calibration recovery

5F = Estimated concentration. Potential concerns for the measurement of acrolein using Method TO-15.

6E = Detected above the calibration range

6G = Reported between the laboratory MDL and RL

TABLE 4-5. CURRENT INVESTIGATION ANALYTES DETECTED IN SUB-SLAB VAPOR COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 1 of 2)

				1				<u> </u>			1	T	ı	T	
		L	_ocation	Garage	Building	Garage	e Building	Garage	Building	Shops Building	Shops Building	HazMat Building	Tool Issue Building	Salvage Bu	uilding
		Loc	ation ID	F-5	SS01	F-SS01		F-8	SS02	G-SS01	G-SS02	HMB-SS01	H-SS01	J-SS0)1
		Sampling Da	ate/Time			8/17/2021 11:22		8/17/20	21 11:40	8/17/2021 12:23	8/17/2021 12:50	8/17/2021 13:22	7/15/2021 15:13	8/17/2021	13:45
			ole Type		N		FD		N	N	N	N	N	N	
		Field Sa			SS01-02		SS01-03		SS02-02	SSV-GSS01-02	SSV-GSS02-02	SSV-HMBSS01-02	SSV-HSS01-01	SSV-JSS(-
		Lab Sa	•		390-20A		390-21A		390-22A	2108390-23A	2108390-24A	2108390-25A	2107362B-14A	2108390-	
	1	Commercial/	Status	vali	dated	Vali	idated	vaii	dated	Validated	Validated	Validated	Validated	Validate	ea
Analyte	Residential SVSL ^(a)	Industrial SVSL ^(a)	Units	Result	QA Reason	Result	QA Reason	Result	QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA Reason	Result QA	A Reason
Acetone	1,100,000	4,700,000	μg/m ³	ND (<2.4)		ND (<2.4)		ND (<2.4)		ND (<2.4)	ND (<2.5)	ND (<2.4)	56	ND (<2.5)	
Carbon Disulfide	24,000	100,000	μg/m ³	ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.2)	ND (<1.3)	ND (<1.2)	ND (<1.2)	32	
Ethanol	NE	NE	μg/m ³	ND (<2.4)		ND (<2.4)		22		ND (<2.4)	30	ND (<2.4)	ND (<2.4)	44	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE	NE	μg/m ³	ND (<1.0)		ND (<1.0)		8.3		ND (<1.0)	ND (<1.1)	ND (<1.0)	ND (<1.0)	ND (<1.0)	
Hexane	24,000	100,000	μg/m ³	77	J 3D	54	J 3D	97		50	75	58	ND (<0.65)	120	
Isopropyl Alcohol (2-Propanol)	7,000	29,000	μg/m ³	ND (<0.76)		ND (<0.76)		ND (<0.74)		ND (<0.76)	31	13	26	20	
Propylene	100,000	430,000	μg/m³	ND (<0.52)		ND (<0.52)		8.2		ND (<0.52)	ND (<0.54)	ND (<0.52)	6.8 J 6G	ND (<0.53)	
Tetrachloroethene (PCE)	15	67	μg/m ³	9.4		9.7		63		ND (<1.1)	300	72	750	23	
Tetrahydrofuran	70,000	290,000	μg/m ³	ND (<0.61)		ND (<0.61)		ND (<0.60)		ND (<0.61)	4.6	ND (<0.61)	ND (<0.60)	ND (<0.63)	
Toluene	10,000	43,000	μg/m ³	ND (<0.40)		ND (<0.40)		7.7		ND (<0.40)	4.3	ND (<0.40)	4.2	5.2	
Trichloroethene (TCE)	16	100	μg/m ³	ND (<0.80)		ND (<0.80)		ND (<0.78)		ND (<0.80)	ND (<0.83)	ND (<0.80)	21	ND (<0.81)	
Trichlorofluoromethane (Freon 11)	43,000	180,000	μg/m ³	ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.2)	ND (<1.3)	ND (<1.2)	33	ND (<1.3)	
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<0.58)		ND (<0.58)		10		ND (<0.58)	ND (<0.61)	ND (<0.58)	ND (<0.57)	ND (<0.60)	
m- & p-Xylenes	3,300	15,000	μg/m ³	4.8		5.5		15		5.5	7.5	6.7	5.8	9.5	
o-Xylene	3,300	15,000	μg/m³	ND (<1.1)		ND (<1.1)		7.1		ND (<1.1)	ND (<1.2)	ND (<1.1)	ND (<1.1)	ND (<1.1)	
TPH - Gasoline	20,000 ^(b)	83,000 ^(b)	μg/m ³	ND (<420)		ND (<420)		530		ND (<420)	490	ND (<420)	ND (<410)	490	

TABLE 4-5. CURRENT INVESTIGATION ANALYTES DETECTED IN SUB-SLAB VAPOR COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 2 of 2)

Notes:

Only analytes detected in one or more samples are shown. Results for leak check compound 1,1-difluoroethane are presented in Appendix C.

Analytes detected above one or both SVSLs are shown in **bold**.

Concentrations detected above the laboratory MDL are shown in bold.

For non-detects, the value in parentheses corresponds to the laboratory MDL.

Concentration exceeds residential SVSL.

Concentration exceeds residential and commercial/industrial SVSL.

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

(b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air screening levels (SWRCB, 2019) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

< = less than

 μ g/m³ = micrograms per cubic meter

CalEPA = California Environmental Protection Agency

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = estimated result

Data Validation Reason Code Definitions:

3D = field duplicate imprecision

6G = reported between the laboratory MDL and RL

TABLE 4-6. CURRENT INVESTIGATION ANALYTES DETECTED IN SUB-SLAB VAPOR COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 1 of 2)

		L	ocation	Garage	Building	Garage	Building	Garage	Building	Shops	Building	Shops	Building	HazMa	t Building	Tool Iss	ue Building	Salvage	e Building
		Loc	ation ID	F-S	S01	F-9	SS01	F-9	SS02	G-:	SS01		SS02	HME	-SS01	H-:	SS01	J - S	SS01
		Sampling Da			21 11:22	8/17/2021 11:22			21 11:40	_	021 12:23		21 12:50		21 13:22)21 15:13		021 13:45
		, ,	Іе Туре	N		F	FD	N		N		N		N		N			N
		Field Sar	mple ID	SSV-FS	SS01-02	SSV-F	SS01-03	SSV-F	SS02-02	SSV-G	SS01-02	SSV-G	SS02-02	SSV-HM	BSS01-02	SSV-H	ISS01-01	SSV-J	SS01-02
		Lab Sai	•		90-20A		390-21A		390-22A		390-23A		390-24A		90-25A		62B-14A		390-26A
	1		Status	Valid	dated	Vali	dated	Vali	dated	Vali	idated	Vali	dated	Vali	dated	Val	idated	Vali	idated
Analyte	Residential SVSL ^(a)	Commercial/ Industrial SVSL ^(a)	Units	Poo: .!t	QA Reason	Postult	QA Reason	Possili	QA Reason	Pocult.	QA Reason	Poc. It	QA Reason	Possilt	QA Reason	Bos.ult	QA Reason	Pos. It	QA Reason
Acetone				t t	QA Reason	1	QA Reason	1	QA Reason		QA Reason		QA Reason	1	QA Reason	Kesuit	QA Reason		QA Reason
Carbon Disulfide	32,000,000	140,000,000	μg/m ³	ND (<2.4)		ND (<2.4)		ND (<2.4)		ND (<2.4)		ND (<2.5)		ND (<2.4)		+		ND (<2.5)	\vdash
	730,000 NE	3,100,000	μg/m ³	ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.3)		ND (<1.2)		ND (<1.2)		32	\vdash
Ethanol	• • • • • • • • • • • • • • • • • • • •	NE	μg/m ³	ND (<2.4)		ND (<2.4)		22		ND (<2.4)		30		ND (<2.4)		ND (<2.4)		44	
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	NE TO SOO	NE	μg/m ³	ND (<1.0)		ND (<1.0)		8.3		ND (<1.0)		ND (<1.1)		ND (<1.0)		ND (<1.0)		ND (<1.0)	
Hexane	730,000	3,100,000	μg/m³	77	J 3D	54	J 3D	97		50		75		58		ND (<0.65)		120	
Isopropyl Alcohol (2-Propanol)	210,000	880,000	μg/m ³	ND (<0.76)		ND (<0.76)		ND (<0.74)		ND (<0.76)		31		13		26		20	
Propylene	3,100,000	13,000,000	μg/m ³	ND (<0.52)		ND (<0.52)		8.2		ND (<0.52)		ND (<0.54)		ND (<0.52)		6.8	J 6G	ND (<0.53)	
Tetrachloroethene (PCE)	460	2,000	μg/m³	9.4		9.7		63		ND (<1.1)		300		72		750		23	
Tetrahydrofuran	2,100,000	8,800,000	μg/m ³	ND (<0.61)		ND (<0.61)		ND (<0.60)		ND (<0.61)		4.6		ND (<0.61)		ND (<0.60)		ND (<0.63)	1
Toluene	310,000	1,300,000	μg/m ³	ND (<0.40)		ND (<0.40)		7.7		ND (<0.40)		4.3		ND (<0.40)		4.2		5.2	1
Trichloroethene (TCE)	480	3,000	μg/m³	ND (<0.80)		ND (<0.80)		ND (<0.78)		ND (<0.80)		ND (<0.83)		ND (<0.80)		21		ND (<0.81)	1
Trichlorofluoromethane (Freon 11)	1,300,000	5,300,000	μg/m ³	ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.2)		ND (<1.3)		ND (<1.2)		33		ND (<1.3)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<0.58)		ND (<0.58)		10		ND (<0.58)		ND (<0.61)		ND (<0.58)		ND (<0.57)		ND (<0.60)	
m- & p-Xylenes	100,000	440,000	μg/m ³	4.8		5.5		15		5.5		7.5		6.7		5.8		9.5	
o-Xylene	100,000	440,000	μg/m ³	ND (<1.1)		ND (<1.1)		7.1		ND (<1.1)		ND (<1.2)		ND (<1.1)		ND (<1.1)		ND (<1.1)	
TPH - Gasoline	600,000 ^(b)	2,500,000 ^(b)	μg/m ³	ND (<420)		ND (<420)		530		ND (<420)		490		ND (<420)		ND (<410)		490	

TABLE 4-6. CURRENT INVESTIGATION ANALYTES DETECTED IN SUB-SLAB VAPOR COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 2 of 2)

Notes:

Only analytes detected in one or more samples are shown. Results for leak check compound 1,1-difluoroethane are presented in Appendix C.

Analytes detected above one or both SVSLs are shown in **bold**.

Concentrations detected above the laboratory MDL are shown in bold.

For non-detects, the value in parentheses corresponds to the laboratory MDL.

Concentration exceeds residential SVSL.

Concentration exceeds residential and commercial/industrial SVSL.

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

(b) SVSL derived by dividing the SF RWQCB residential or commercial/industrial indoor air screening levels (SWRCB, 2019) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

< = less than

 μ g/m³ = micrograms per cubic meter

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

SF RWQCB = San Francisco Bay Regional Water Quality Control Board

SVSL = soil vapor screening level

SWRCB = California State Water Resources Control Board

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = estimated result

Data Validation Reason Code Definitions:

3D = field duplicate imprecision

6G = reported between the laboratory MDL and RL

TABLE 4-7. CURRENT INVESTIGATION ANALYTES DETECTED IN SEWER GAS COMPARED TO SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 1 of 2)

Location ID Sampling Date/Time Sample Type Field Sample ID Lab Sample ID Status					7/15/2021 10:31 N F-SEW-01P 0005847-02		Building H (Outside) 7/15/2021 9:32 N H-SEW-01P 0005847-03 Not Validated		Building H (Outside) 7/15/2021 9:32 FD H-SEW-02P 0005847-04 Not Validated		H (Inside) 021 10:20 N W-03P 847-06 alidated	Building J (Outside) 7/15/2021 10:44 N J-SEW-01P 0005847-05 Not Validated	
Analyte	Residential SL ^(a)	Commercial/ Industrial SL ^(a)	Units	Result	QA Reason	Result	QA Reason	Result	QA Reason	Result	QA Reason	Result	QA Reason
Benzene	3.2	14	μg/m ³	5.06		2.02		2.57		2.22		3.32	
Chloroform	4.0	18	μg/m ³	ND (<1.39)		ND (<1.41)	-	ND (<1.41)	-	1.54		9.81	
Ethylbenzene	37	160	μg/m ³	ND (<1.15)		ND (<1.16)		ND (<1.16)		1.41	J	ND (<1.15)	
Tetrachloroethene (PCE)	15	67	μg/m ³	ND (<1.19)		1.28	J	1.74	J	ND (<1.20)		ND (<1.20)	
Toluene	10,000	43,000	μg/m ³	ND (<2.44)		ND (<2.46)		3.06	J	21.1		ND (<2.45)	
1,2,4-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.18)		3.62		4.72		1.22	J	ND (<1.18)	
1,3,5-Trimethylbenzene	2,100	8,700	μg/m ³	ND (<1.18)		2.46	J	3.10		ND (<1.19)		ND (<1.18)	
m- & p-Xylenes	3,300	15,000	μg/m ³	ND (<1.11)		1.16	J	1.67	J	5.75		ND (<1.11)	
o-Xylene	3,300	15,000	μg/m ³	ND (<1.11)		ND (<1.12)		1.32	J	4.91		ND (<1.11)	

TABLE 4-7. CURRENT INVESTIGATION ANALYTES DETECTED IN SEWER GAS COMPARED TO SCREENING LEVELS (0.03 ATTENUATION FACTOR) (Page 2 of 2)

Notes:

Only analytes detected in one or more samples are shown.

Analytes detected above one or both SLs are shown in bold.

Concentrations detected above the laboratory LOD are shown in bold.

For non-detects, the value in parentheses corresponds to the laboratory LOD.

Sample dates and times are the passive sampler retrieval dates and times.

Concentration exceeds residential SL.

Concentration exceeds residential and commercial/industrial SL.

(a) SLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.03 attenuation factor (CalEPA, 2020).

< = less than

μg/m³ = micrograms per cubic meter

CalEPA = California Environmental Protection Agency

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

LOD = limit of detection

N = normal sample

ND = not detected above the laboratory LOD

QA = quality assurance data validation qualifier

SL = screening level

Laboratory Qualifier Definitions:

J = estimated concentration

TABLE 4-8. CURRENT INVESTIGATION ANALYTES DETECTED IN SEWER GAS COMPARED TO SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 1 of 2)

Location ID Sampling Date/Time Sample Type Field Sample ID Lab Sample ID Status					7/15/2021 10:31 N F-SEW-01P 0005847-02		Building H (Outside) 7/15/2021 9:32 N H-SEW-01P 0005847-03 Not Validated		Building H (Outside) 7/15/2021 9:32 FD H-SEW-02P 0005847-04 Not Validated		H (Inside) 121 10:20 N W-03P 847-06 alidated	Building J (Outside) 7/15/2021 10:44 N J-SEW-01P 0005847-05 Not Validated	
Analyte	Residential SL ^(a)	Commercial/ Industrial SL ^(a)	Units	Popult	QA Reason	Popult	QA Reason	Pocult	QA Reason	Pocult	QA Reason	Posult	QA Reason
Benzene	97	420	μg/m ³	5.06	QA Iteason	2.02		2.57	L Iteason	2.22		3.32	
Chloroform	120	530	μg/m ³			ND (<1.41)	J	ND (<1.41)	3	1.54		9.81	
Ethylbenzene	1.100	4,900	μg/m ³	ND (<1.15)		ND (<1.16)		ND (<1.16)		1.41		ND (<1.15)	
Tetrachloroethene (PCE)	460	2,000	μg/m ³	ND (<1.19)		1.28		1.74		ND (<1.20)		ND (<1.20)	
Toluene	310,000	1,300,000	μg/m ³	ND (<2.44)		ND (<2.46)		3.06		21.1		ND (<2.45)	
1,2,4-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.18)		3.62		4.72		1.22	J	ND (<1.18)	
1,3,5-Trimethylbenzene	63,000	260,000	μg/m ³	ND (<1.18)		2.46	J	3.10		ND (<1.19)		ND (<1.18)	
m- & p-Xylenes	, , ,		ND (<1.11)		1.16	J	1.67	J	5.75		ND (<1.11)		
o-Xylene	100,000	440,000	μg/m ³	ND (<1.11)		ND (<1.12)		1.32	J	4.91		ND (<1.11)	

TABLE 4-8. CURRENT INVESTIGATION ANALYTES DETECTED IN SEWER GAS COMPARED TO SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 2 of 2)

Notes:

Only analytes detected in one or more samples are shown.

No analytes were detected above SLs.

Concentrations detected above the laboratory LOD are shown in bold.

For non-detects, the value in parentheses corresponds to the laboratory LOD.

Sample dates and times are the passive sampler retrieval dates and times.

(a) SLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC 2020) by a 0.001 attenuation factor (DTSC, 2011).

< = less than

 $\mu g/m^3$ = micrograms per cubic meter

DTSC = California Department of Toxic Substances Control

FD = field duplicate sample

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

ID = identification

LOD = limit of detection

N = normal sample

ND = not detected above the laboratory LOD

QA = quality assurance data validation qualifier

SL = screening level

Laboratory Qualifier Definitions:

J = estimated concentration

TABLE 5-1. FALL/WINTER 2020/2021 AND SUMMER 2021 MAXIMUM ANALYTE CONCENTRATIONS DETECTED IN SOIL GAS (Page 1 of 2)

	Maximum Cond	centration (µg/m³)	Location ID Concer	of Maximum ntration	Concentra	th of Maximum ation (feet)		etections/ of Samples		ocations/ cations Sampled
Analyte	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021
Acetone	460	260	VW26	VW48	5.5	14.5	98/110	51/117	45/47	37/55
tert-Amyl Methyl Ether (TAME)	7.9	ND	VW34	NA	14.5	NA	1/110	0/117	1/47	0/55
Benzene	2,500	22 J-	VW57	VW32	14.5	14.5	53/110	12/117	36/47	10/55
Bromodichloromethane (BDCM)	60	43	VW30	VW30	14.5	5.5	9/110	7/117	5/47	4/55
tert-Butyl Alcohol (TBA)	13	38 J	VW34	VW47	14.5	5.5	17/110	5/117	11/47	5/55
Carbon Disulfide	300	150	VW34	VW46	5.5	14.5	89/110	12/117	45/47	11/55
Carbon Tetrachloride	9.4	9.1 J-	VW17	VW17	14.5	14.5	5/110	1/117	3/47	1/55
Chlorobenzene (Benzyl Chloride)	6.1	340 J-	VW32	VW47	14.5	14.5	1/110	1/117	1/47	1/55
Chloroform	1,400	1,500	VW30	VW30	5.5	5.5	67/110	40/117	40/47	22/55
Chloromethane	1.5	ND	SVM-3	NA	14	NA	3/110	NA	2/47	NA
Cumene (Isopropylbenzene)	ND	14	NA	VW49	NA	14.5	NA	2/117	NA	1/55
Cyclohexane	120,000	34	VW57	VW37	14.5	5.5	7/110	12/117	5/47	11/55
1,2-Dibromoethane (Ethylene Dibromide)	24	ND	VW24	NA	14.5	NA	8/110	NA	8/47	NA
Dibromomethane	13	ND	VW30	NA	14.5	NA	2/110	NA	2/47	NA
1,4-Dichlorobenzene	2.6	ND	VW46, VW56	NA	14.5	NA	2/110	NA	2/47	NA
Dichlorodifluoromethane (Freon 12)	57	67 J-	VW52	VW19	14.5	14.5	84/110	31/117	40/47	19/55
1,2-Dichloroethane	7.9	ND	VW34	NA	14.5	NA	6/115	NA	6/47	NA
cis-1,2-Dichloroethene (cDCE)	47,000	53,000	SVM-1	SVM-1	4	4	7/115	3/117	4/47	2/55
trans-1,2-Dichloroethene	200	ND	SVM-1	NA	4	NA	2/115	NA	1/47	NA
1,2-Dichloropropane	600	820	SVM-1	SVM-1	4	4	1/110	1/117	1/47	1/55
1,1-Difluoroethane	11	LC	VW50	NA	5.5	NA	2/110	NA	1/47	NA
1,4-Dioxane	ND	80	NA	VW46	NA	14.5	NA	1/117	NA	1/55
Ethanol	160	62	VW56	VW16	14.5	14.5	69/110	20/117	39/47	17/55
Ethyl Acetate	ND	41	NA	VW26	NA	14.5	NA	1/117	NA	1/55
Ethylbenzene	220	65 J-	VW57	VW32	14.5	14.5	76/110	21/117	44/47	19/55
1-Ethyl-4-Methylbenzene (4-Ethyltoluene)	53	80 J-	VW16	VW32	5.5	14.5	63/110	18/117	41/47	16/55
Ethyl tert-Butyl Ether (ETBE)	7.3	ND	VW34	NA	14.5	NA	1/110	NA	1/47	NA
n-Heptane	16,000	34	VW57	VW37	14.5	5.5	24/110	5/117	20/47	4/55
Hexane	76,000	4,300 J	VW57	VW35	14.5	5.5	11/110	37/117	8/47	24/55
2-Hexanone	3.9	0.72 J-	VW50	VW21	14.5	5.5	2/110	1/117	2/47	1/55
Isooctane (2,2,4-Trimethylpentane)	89	100	VW20	VW65	14.5	5.5	24/110	8/117	20/47	5/55
Isopropyl Alcohol (2-Propanol)	LC	92	NA	VW43	NA	5.5	NA	48/117	NA	35/55
Methyl Ethyl Ketone (2-Butanone)	180	26	VW26	VW53	5.5	5.5	73/110	3/117	41/47	2/55
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	95	790 J-	VW26	VW20	5.5	14.5	44/110	5/117	35/47	5/55
Methyl tert-Butyl Ether (MTBE)	4.4	38	VW34	VW37	14.5	5.5	3/110	1/117	3/47	1/55
Naphthalene	70	11 J-	VW48	VW56	5.5	14.5	18/110	1/117	12/47	1/55
Propylbenzene	ND	17 J-	NA	VW32	NA	14.5	NA	5/117	NA	4/55
Propylene	110	69	VW18	VW48	5.5	14.5	3/110	7/117	3/47	7/55
Styrene	310	ND	VW42	NA	5.5	NA	11/110	NA	10/47	NA
Tetrachloroethene (PCE)	1,200,000	330,000	SVM-1	SVM-1	4	4	107/115	108/117	46/47	53/55
1,1,1,2-Tetrafluoroethane	23	ND	VW17	NA	5.5	NA	2/110	NA	2/47	NA
Tetrahydrofuran	64	9.6 J	VW26	VW15	5.5	23.5	60/110	3/117	41/47	3/55
Toluene	11,000	110	VW57	VW26	14.5	14.5	103/110	39/117	46/47	29/55
1,1,1-Trichloroethane	9.4	6.0 J-	VW21	VW21	14.5	5.5	12/115	2/117	8/47	1/55
Trichloroethene (TCE)	16,000	18,000	SVM-1	SVM-1	4	4	35/115	13/117	21/47	9/55
Trichlorofluoromethane (Freon 11)	10	14 J-	VW52	VW19	14.5	14.5	61/110	6/117	33/47	3/55
1,2,3-Trichloropropane	5.3	ND	VW17	NA	14.5	NA	2/110	NA	2/47	NA
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	3.1	ND	VW34	NA	5.5	NA	5/110	NA	3/47	NA

TABLE 5-1. FALL/WINTER 2020/2021 AND SUMMER 2021 MAXIMUM ANALYTE CONCENTRATIONS DETECTED IN SOIL GAS (Page 2 of 2)

	Maximum Cond	centration (µg/m³)		of Maximum entration	Sample Depth Concentra	n of Maximum ation (feet)		etections/ of Samples	No. Locations/ Total No. Locations Sampled		
Analyte	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	Fall/Winter 2020/2021	Summer 2021	
1,2,4-Trimethylbenzene	160	66 J-	VW48	VW32	5.5	14.5	77/110	19/117	43/47	17/55	
1,3,5-Trimethylbenzene	32	29 J-	VW48	VW32	5.5	14.5	58/110	6/117	35/47	5/55	
Vinyl Acetate	4.8	ND	VW24	NA	14.5	NA	2/110	NA	2/47	NA	
m- & p-Xylenes	420	200 J-	VW57	VW32	14.5	14.5	91/110	30/117	45/47	24/55	
o-Xylene	75	64 J-	VW16	VW32	5.5	14.5	81/110	24/117	44/47	20/55	
TPH - Gasoline	1,900,000	7,800	VW57	VW35	14.5	5.5	110/110	24/117	47/47	19/55	

Notes:

Sample depths are referenced to the top of soil (bottom of pavement). $\mu g/m^3 = micrograms$ per cubic meter

ID = identification

J = estimated concentration

J- = estimated concentration; potential low bias

NA = not applicable

ND = not detected

No. = number

TPH = total petroleum hydrocarbons

TABLE 5-2. FALL/WINTER 2020/2021 AND SUMMER 2021 MAXIMUM COC CONCENTRATIONS DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.03 ATTENUATION FACTOR)

(Page 1 of 1)

					Comparison to Residential SVSLs						Comparison	to Commercial/I	ndustrial SVSLs	3
	Maximum	Concentration	Location ID of Maximum			No. Samples E	No. Samples Exceeding Goal/		Exceeding Goal/	Commercial/	No. Samples I	Exceeding Goal/	No. Locations	Exceeding Goal/
	(µg/m³)		Concentration		Residential	Total No.	of Samples	Total No. Locations Sampled		Industrial	Industrial Total No. o		of Samples Total No. Locations Samp	
	Fall/Winter		Fall/Winter		SVSL ^(a)	Fall/Winter		Fall/Winter		SVSL ^(a)	Fall/Winter		Fall/Winter	
Analyte	2020/2021	Summer 2021	2020/2021	Summer 2021	(μg/m³)	2020/2021	Summer 2021	2020/2021	Summer 2021	(μg/m³)	2020/2021	Summer 2021	2020/2021	Summer 2021
Benzene	39	16	VW27	VW65	3.2	23/57	5/56	22/45	5/51	14	7/57	1/56	7/45	1/51
Bromodichloromethane (BDCM)	24	43	VW30	VW30	2.5	2/57	3/56	2/45	3/51	11	2/57	2/56	2/45	2/51
Chloroform	1,400	1,500	VW30	VW30	4.0	18/57	14/56	15/45	13/51	18	4/57	6/56	3/45	6/51
1,2-Dibromoethane (Ethylene Dibromide)	5.1 J	ND	VW19	NA	0.16	3/57	0/56	3/45	0/51	0.67	3/57	0/56	3/45	0/51
cis-1,2-Dichloroethene (cDCE)	35,000	53,000	SVM-1	SVM-1	280	1/57	1/56	1/45	1/51	1,200	1/57	1/56	1/45	1/51
1,2-Dichloropropane	600 J	820	SVM-1	SVM-1	25	1/57	1/56	1/45	1/51	110	1/57	1/56	1/45	1/51
Ethylbenzene	66	49	VW16	VW37	37	6/57	1/56	6/45	1/51	160	0/57	0/56	0/45	0/51
Naphthalene	70	ND	VW48	NA	2.8	11/57	0/56	8/45	0/51	12	2/57	0/56	2/45	0/51
Tetrachloroethene (PCE)	320,000	330,000	SVM-1	SVM-1	15	40/57	47/56	31/45	43/51	67	18/57	33/56	13/45	31/51
Toluene	9,700	92	VW32	VW37	10,000	0/57	0/56	0/45	0/51	43,000	0/57	0/56	0/45	0/51
Trichloroethene (TCE)	15,000	18,000	SVM-1	SVM-1	16	1/57	3/56	1/45	2/51	100	1/57	1/56	1/45	1/51

Notes:

Shallow soil gas samples collected from a depth of 5.5 feet, except samples from vapor wells SVM-1 through SVM-3, which were collected at a depth of 4 to 5 feet.

μg/m³ = micrograms per cubic meter

CalEPA = California Environmental Protection Agency

COC = chemical of concern

DTSC = Department of Toxic Substances Control

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

J = estimated concentration

NA = not applicable

ND = not detected No. = number

SVSL = soil vapor screening level

One or more samples with analyte concentration exceeding residential SVSL with the number of samples in **bold**.

One or more samples with analyte concentration exceeding commercial/industrial SVSL with the number of samples in **bold**.

Goal Compliance:

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC, 2020) by a 0.03 soil vapor attenuation factor (CalEPA, 2020).

TABLE 5-3. FALL/WINTER 2020/2021 AND SUMMER 2021 MAXIMUM COC CONCENTRATIONS DETECTED IN SHALLOW SOIL GAS COMPARED TO SOIL VAPOR SCREENING LEVELS (0.001 ATTENUATION FACTOR) (Page 1 of 1)

						Compar	ison to Residentia	al SVSLs		Comparison to Commercial/Industrial SVSLs					
	Maximum	Concentration	Location ID of Maximum			•	No. Samples Exceeding Goal/		No. Locations Exceeding Goal/		No. Samples Exceeding Goal/		No. Locations	Exceeding Goal/	
	(µ	(μg/m³) Concentr		entration	Residential	Total No.	of Samples	Total No. Locations Sampled		Industrial	Total No.	of Samples	Total No. Locations Sampled		
	Fall/Winter				SVSL ^(a)	Fall/Winter	Fall/Winter			SVSL ^(a)	Fall/Winter		Fall/Winter		
Analyte	2020/2021	Summer 2021	2020/2021	Summer 2021	(μg/m³)	2020/2021	Summer 2021	2020/2021	Summer 2021	(μg/m ³)	2020/2021	Summer 2021	2020/2021	Summer 2021	
Benzene	39	16	VW27	VW65	97	0/57	0/56	0/45	0/51	420	0/57	0/56	0/45	0/51	
Bromodichloromethane (BDCM)	24	43	VW30	VW30	76	0/57	0/56	0/45	0/51	330	0/57	0/56	0/45	0/51	
Chloroform	1,400	1,500	VW30	VW30	120	2/57	4/56	1/45	4/51	530	2/57	1/56	1/45	1/51	
1,2-Dibromoethane (Ethylene Dibromide)	5.1 J	ND	VW19	NA	4.7	1/57	0/56	1/45	0/51	20	0/57	0/56	0/45	0/51	
cis-1,2-Dichloroethene (cDCE)	35,000	53,000	SVM-1	SVM-1	8,300	1/57	1/56	1/45	1/51	35,000	0/57	1/56	0/45	1/51	
1,2-Dichloropropane	600 J	820	SVM-1	SVM-1	760	0/57	1/56	0/45	1/51	3,300	0/57	0/56	0/45	0/51	
Ethylbenzene	66	49	VW16	VW37	1,100	0/57	0/56	0/45	0/51	4,900	0/57	0/56	0/45	0/51	
Naphthalene	70	ND	VW48	NA	83	0/57	0/56	0/45	0/51	360	0/57	0/56	0/45	0/51	
Tetrachloroethene (PCE)	320,000	330,000	SVM-1	SVM-1	460	2/57	3/56	2/45	3/51	2,000	1/57	1/56	1/45	1/51	
Toluene	9,700	92	VW32	VW37	310,000	0/57	0/56	0/45	0/51	1,300,000	0/57	0/56	0/45	0/51	
Trichloroethene (TCE)	15,000	18,000	SVM-1	SVM-1	480	1/57	1/56	1/45	1/51	3,000	1/57	1/56	1/45	1/51	

Notes:

Shallow soil gas samples collected from a depth of 5.5 feet, except samples from vapor wells SVM-1 through SVM-3, which were collected at a depth of 4 to 5 feet.

 $\mu g/m^3$ = micrograms per cubic meter

COC = chemical of concern

DTSC = Department of Toxic Substances Control

HERO = Human and Ecological Risk Office

HHRA = human health risk assessment

J = estimated concentration

NA = not applicable

ND = not detected No. = number

SVSL = soil vapor screening level

One or more samples with analyte concentration exceeding residential SVSL with the number of samples in **bold**.

One or more samples with analyte concentration exceeding commercial/industrial SVSL with the number of samples in **bold**.

Goal Compliance:

(a) Unless noted otherwise, SVSLs were derived by dividing the HERO HHRA Note 3 residential and commercial/industrial ambient air screening levels (DTSC, 2020) by a 0.001 soil vapor attenuation factor (DTSC, 2011).

Legend

- Active Soil Gas Sample Location
- Active Sub-Slab Vapor Sample Location
- Passive Sewer Gas Sample Location (Approximate)
- Existing Soil Vapor Extraction Well (Not Sampled)
- Site Boundary

- 1. Vapor wells VW58 through VW66 were installed in 2021 as part of the current investigation. All other vapor wells were previously installed.
- 2. All sub-slab vapor locations consist of vapor pins installed in 2021 as part of the current investigation.
- 3. Passive sewer gas samples were collected from sewer cleanouts.
- 4. "VW" active soil gas sample locations are dualcompletion vapor wells with probes at 5.5 and 14.5 feet bgs, except VW14, VW15, and VW62.
- 5. VW14, VW15, and VW62 are single-completion vapor wells with probes at 26, 23.5, and 25.5 feet bgs, respectively.
- 6. SVM-1 and SVM-3 are dual-completion vapor wells with probes at 4 and 14 feet bgs.
- 7. SVM-2 is a dual-completion vapor well with probes at 5 and 14 feet bgs.

REGIONAL TRANSIT LIGHTRAIL

AECOM SMUD Corporation Yard 1708 59th Street, Sacramento, California

Benzene, Ethylbenzene, and Naphthalene Lateral Extents in Shallow Soil Gas Fall/Winter 2020/2021 and Summer 2021

Summer 2021

Summer 2021

0.001 Attenuation Factor

0.03 Attenuation Factor

TRAILER

AECOM SMUD Corporation Yard 1708 59th Street, Sacramento, California

1,2-DBE, BDCM, and Chloroform Lateral Extents in Shallow Soil Gas

Fall/Winter 2020/2021 and Summer 2021

Appendix A SMUD and DTSC Correspondence

SACRAMENTO MUNICIPAL UTILITY DISTRICT

Date:	June 15, 2021		ES 21-007
To:	Mr. Jose Salcedo, P.E.	., Chief N	orthern California Schools Unit
From:	Keegan George, P.E.,	SMUD E	nvironmental Services
Subjec	ct: Notification of Addition	onal Soil	Gas Sampling, SMUD 59th Street Corporation Yard
\checkmark	Sent for your Review	\checkmark	For Your Files
	For Your Signature		For Distribution
	Other:		For Processing

Dear Mr. Salcedo,

This Letter is to inform you of SMUD's plans to conduct additional soil gas sampling at the 59th Street Corporation Yard in Sacramento, California. The purpose of the additional soil gas sampling is to evaluate seasonal variability in volatile organic compound (VOC) concentrations across the site, and provide DTSC with lines of evidence that could potentially be used to determine the appropriate attenuation factor for site remediation. Below I have outlined SMUD's proposed scope of work:

SMUD plans to collect soil gas samples from existing vapor monitoring wells (VW14 through VW57 and SVM-1 through SVM-3) in July 2021. The summer soil gas data will be compared to the November-December 2020 (fall/winter) soil gas data to evaluate potential seasonal variability in VOC concentrations. Additional vapor monitoring wells will be installed and soil gas samples collected to refine the extent of VOC impacts in areas where higher VOCs concentrations were detected during the November-December 2020 soil gas investigation (in the vicinity of vapor wells VW14, VW24, and VW30). SMUD also plans to conduct sub-slab vapor sampling beneath the Garage, Shops, Hazardous Material, Salvage, and Tool Issue buildings. The sub-slab vapor data combined with shallow soil gas data from nearby vapor monitoring wells will be used as a line of evidence for attenuation of subsurface VOC concentrations. Figure 1 (attached) shows the proposed soil gas and sub-slab vapor sampling locations. Additionally, SMUD plans to collect ambient air samples from select sewer line cleanout locations to evaluate the sewer lines as a potential preferential vapor intrusion pathway.

The proposed vapor well locations depicted using orange symbols on Figure 1 will be dual-completion wells with probes installed at 5.5 and 14.5 feet below ground surface (bgs). The proposed vapor well location depicted using a purple symbol on Figure 1 will be a single-completion well with a probe installed at 26 feet bgs. Vapor well installation, soil gas sampling, and analysis procedures will be the same as those described in the *Site Characterization and Analysis Plan Addendum, SMUD 59th Street Corporation Yard* (AECOM 2020). Sub-slab vapor probes will be installed and sampled in accordance with the *Advisory – Active Soil Gas Investigations* (DTSC 2015). Sub-slab vapor samples will be analyzed by the same method as the soil gas samples collected from vapor monitoring wells (i.e., United States Environmental Protection Agency [USEPA] Method TO-15).

Beacon Environmental (Beacon) passive air samplers will be used to collect ambient air samples from sewer line cleanout locations. The samplers will be deployed for 7 days to minimize temporal effects and achieve lower detection limits than if deployed for a shorter duration. Beacon will analyze the passive samples using USEPA Method TO-17. Beacon's in-house laboratory is accredited for USEPA Method TO-17 through the National Environmental Laboratory Accreditation Program (EPA Number MD01091). The laboratory reporting limits are attached.

The soil gas, sub-slab vapor, and sewer ambient air sampling results will be presented in a forthcoming technical memorandum. The sampling event is planned to take place from July 6-16, 2020. If DTSC would like to be present during sampling, please contact me in advance to coordinate your visit. If you have any questions or concerns regarding the content of this Letter, please contact me at (916) 847-3086 or by email at keegan.george@smud.org.

Keegan George, P.E.

Keegan George

Associate Civil Engineer, Environmental Services

Attachments:

Figure 1 – Proposed Additional Characterization Sample Locations Beacon Passive Air Sampler Reporting Limits

BEACON PASSIVE AIR SAMPLER REPORTING LIMITS

Limits of Detection (LODs) based on Exposure Periods. When required, lower detection limits can be reported.

		Uptake	1 Day	3 Days	7 Days	14 Days
COMPOUND	CAS	Rate (ml/min)	LOD (ug/m3)	LOD (ug/m3)	LOD (ug/m3)	LOD (ug/m3)
Vinyl Chloride	75-01-4	0.81	4.29	1.43	0.61	0.31
1,1-Dichloroethene	75-35-4	0.33	10.52	3.51	1.50	0.75
1,1,2-Trichlorotrifluoroethane (Fr.113)	76-13-1	0.89	3.90	1.30	0.56	0.28
trans-1,2-Dichloroethene	156-60-5	0.44	7.89	2.63	1.13	0.56
Methyl-t-butyl ether	1634-04-4	0.50	13.89	4.63	1.98	0.99
1,1-Dichloroethane	75-34-3	0.85	4.08	1.36	0.58	0.29
cis-1,2-Dichloroethene	156-59-2	0.53	6.55	2.18	0.94	0.47
Chloroform	67-66-3	0.35	9.92	3.31	1.42	0.71
1,2-Dichloroethane	107-06-2	0.56	6.20	2.07	0.89	0.44
1,1,1-Trichloroethane	71-55-6	1.05	3.31	1.10	0.47	0.24
Carbon Tetrachloride	56-23-5	0.43	8.16	2.72	1.17	0.58
Benzene	71-43-2	0.53	13.10	4.37	1.87	0.94
Trichloroethene	79-01-6	0.33	10.52	3.51	1.50	0.75
1,4-Dioxane	123-91-1	0.41	8.47	2.82	1.21	0.60
1,1,2-Trichloroethane	79-00-5	0.33	10.52	3.51	1.50	0.75
Toluene	108-88-3	0.40	17.36	5.79	2.48	1.24
1,2-Dibromoethane (EDB)	106-93-4	0.39	9.02	3.01	1.29	0.64
Tetrachloroethene	127-18-4	0.41	8.47	2.82	1.21	0.60
1,1,1,2-Tetrachloroethane	630-20-6	0.41	8.52	2.84	1.22	0.61
Chlorobenzene	108-90-7	0.85	4.08	1.36	0.58	0.29
Ethylbenzene	100-41-4	0.85	8.17	2.72	1.17	0.58
p & m-Xylene	108-38-3	0.88	7.89	2.63	1.13	0.56
1,1,2,2-Tetrachloroethane	79-34-5	0.41	8.52	2.84	1.22	0.61
o-Xylene	95-47-6	0.88	7.89	2.63	1.13	0.56
1,2,3-Trichloropropane	96-18-4	0.75	4.63	1.54	0.66	0.33
Isopropylbenzene	98-82-8	0.83	8.37	2.79	1.20	0.60
1,3,5-Trimethylbenzene	108-67-8	0.83	8.37	2.79	1.20	0.60
1,2,4-Trimethylbenzene	95-63-6	0.83	8.37	2.79	1.20	0.60
1,3-Dichlorobenzene	541-73-1	0.75	4.63	1.54	0.66	0.33
1,4-Dichlorobenzene	106-46-7	0.75	4.63	1.54	0.66	0.33
1,2-Dichlorobenzene	95-50-1	0.75	4.63	1.54	0.66	0.33
1,2,4-Trichlorobenzene	120-82-1	0.39	8.86	2.95	1.27	0.63
Naphthalene	91-20-3	0.80	4.34	1.45	0.62	0.31
1,2,3-Trichlorobenzene	87-61-6	0.39	8.86	2.95	1.27	0.63
2-Methylnaphthalene	91-57-6	0.76	4.57	1.52	0.65	0.33
TPH C4-C9		0.59	5,874	1,958	839	420
TPH C10-C15		0.69	5,032	1,677	719	359

From: Salcedo, Jose@DTSC

To: Keegan George

Cc: Shepard, Andy (Sacramento); Kohlhardt, Robert; René Toledo; Emily Bacchini; Patrick Durham;

brake@geoconinc.com; Marisa Kolokotronis; Josh Ewert

Subject: [EXTERNAL] RE: 59th Street - Notification of Additional Soil Gas Sampling

Date: Wednesday, June 30, 2021 12:11:58 PM

Good afternoon Keegan,

DTSC has reviewed SMUD's approach for additional soil gas sampling at the project site. DTSC concurs that the proposed work will fill in data gaps for seasonality assessment and establish more lines of evidence for soil gas characterization. DTSC concurs with the approach outlined in this submittal. During the 6/30 status meeting, SMUD indicated that there could be a change in the analytical lab providing the passive air samplers. Please provide an update of any deviations from this submittal once confirmed.

Please contact me if you have any guestions.

José Salcedo

From: Keegan George < Keegan.George@smud.org>

Sent: Tuesday, June 15, 2021 4:17 PM

To: Salcedo, Jose@DTSC < Jose. Salcedo@dtsc.ca.gov>

Cc: Shepard, Andy (Sacramento) <Andy.Shepard@aecom.com>; Kohlhardt, Robert <Robert.Kohlhardt@aecom.com>; René Toledo <Rene.Toledo@smud.org>; Emily Bacchini <Emily.Bacchini@smud.org>; Patrick Durham <Patrick.Durham@smud.org>; brake@geoconinc.com; Marisa Kolokotronis <Marisa@skkdevelopments.com>; Josh Ewert <ewert@geoconinc.com>

Subject: 59th Street - Notification of Additional Soil Gas Sampling

EXTERNAL:

Good Afternoon Jose,

Attached for your review is a Letter that outlines SMUD's approach for additional soil gas sampling at 59^{th} Street,. The purpose of the additional soil gas sampling is to provide DTSC with lines of evidence that could be potentially used to determine the appropriate attenuation factor for site remediation. Please let me know at your earliest convenience if you have any concerns with our approach. SMUD currently has a private utility locator scheduled for June 30^{th} and drilling scheduled to start on July 6^{th}

Thank you,

Keegan George, P.E. Associate Civil Engineer, Environmental Services

w.916-732-5548 | c.916-847-3086 (Preferred) | Keegan.George@smud.org

SMUD | Powering forward. Together. 6201 S Street, Mail Stop B209, Sacramento, CA 95817 P.O. Box 15830, Sacramento, CA 95852-0830

Confidentiality Notice: The information in this email is for you—the recipient(s) alone. It may have privileged and confidential information. If you are not an intended recipient, do not copy, distribute or take any action that relies on it, and please notify us immediately by reply email.

From: <u>Keegan George</u>
To: <u>Salcedo, Jose@DTSC</u>

Cc: Shepard, Andy (Sacramento); Kohlhardt, Robert; René Toledo; Emily Bacchini; Patrick Durham;

brake@geoconinc.com; Marisa Kolokotronis; Josh Ewert

Subject: [EXTERNAL] RE: RE: 59th Street - Notification of Additional Soil Gas Sampling

Date: Wednesday, June 30, 2021 12:45:10 PM

Hi Jose,

Thank you for the approval to proceed with the additional soil gas sampling to fill in data gaps for a seasonality assessment and to establish more lines of evidence for soil gas characterization. For clarification on your email below, AECOM still plans to use the Beacon Passive Air Samplers (analyzed by USEPA Method TO-17) as proposed in our original notification letter. The only deviation is the lab who will be analyzing the active soil gas samples. AECOM will now be working with Eurofins Air Toxics rather than BC Labs due to the availability of Summa canisters and flow control valves. The active samples will still be analyzed by USEPA Method TO-15 as well.

I will work with AECOM to provide you a comparison of the method detection limits and reporting limits from each lab.

Thank you again for your expedited approval.

Keegan George, P.E.

Senior Civil Engineer, Environmental Services w.916-732-5548 c.916-847-3086 (Preferred) Keegan.George@smud.org

SMUD | Powering forward. Together. 6201 S Street, Mail Stop B209, Sacramento, CA 95817 P.O. Box 15830, Sacramento, CA 95852-0830

Confidentiality Notice: The information in this email is for you—the recipient(s) alone. It may have privileged and confidential information. If you are not an intended recipient, do not copy, distribute or take any action that relies on it, and please notify us immediately by reply email.

From: Salcedo, Jose@DTSC < Jose. Salcedo@dtsc.ca.gov>

Sent: Wednesday, June 30, 2021 12:12 PM

To: Keegan George < Keegan.George@smud.org>

Cc: Shepard, Andy (Sacramento) < Andy. Shepard@aecom.com>; Kohlhardt, Robert

<Robert.Kohlhardt@aecom.com>; René Toledo <Rene.Toledo@smud.org>; Emily Bacchini

<Emily.Bacchini@smud.org>; Patrick Durham <Patrick.Durham@smud.org>; brake@geoconinc.com;

Marisa Kolokotronis <Marisa@skkdevelopments.com>; Josh Ewert <ewert@geoconinc.com>

Subject: [EXTERNAL] RE: 59th Street - Notification of Additional Soil Gas Sampling

CAUTION: This email originated from outside of SMUD. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good afternoon Keegan,

DTSC has reviewed SMUD's approach for additional soil gas sampling at the project site. DTSC concurs that the proposed work will fill in data gaps for seasonality assessment and establish more lines of evidence for soil gas characterization. DTSC concurs with the approach outlined in this submittal. During the 6/30 status meeting, SMUD indicated that there could be a change in the analytical lab providing the passive air samplers. Please provide an update of any deviations from this submittal once confirmed.

Please contact me if you have any questions.

José Salcedo

From: Keegan George < Keegan.George@smud.org>

Sent: Tuesday, June 15, 2021 4:17 PM

To: Salcedo, Jose@DTSC < <u>Jose.Salcedo@dtsc.ca.gov</u>>

Cc: Shepard, Andy (Sacramento) < <u>Andy.Shepard@aecom.com</u>>; Kohlhardt, Robert

< <u>Robert.Kohlhardt@aecom.com</u>>; René Toledo < <u>Rene.Toledo@smud.org</u>>; Emily Bacchini

<<u>Emily.Bacchini@smud.org</u>>; Patrick Durham <<u>Patrick.Durham@smud.org</u>>; <u>brake@geoconinc.com</u>;

Marisa Kolokotronis Marisa@skkdevelopments.com; Josh Ewert ewert@geoconinc.com>

Subject: 59th Street - Notification of Additional Soil Gas Sampling

EXTERNAL:

Good Afternoon Jose,

Attached for your review is a Letter that outlines SMUD's approach for additional soil gas sampling at 59^{th} Street,. The purpose of the additional soil gas sampling is to provide DTSC with lines of evidence that could be potentially used to determine the appropriate attenuation factor for site remediation. Please let me know at your earliest convenience if you have any concerns with our approach. SMUD currently has a private utility locator scheduled for June 30^{th} and drilling scheduled to start on July 6^{th} .

Thank you,

Keegan George, P.E.

Associate Civil Engineer, Environmental Services w.916-732-5548 | c.916-847-3086 (Preferred) | Keegan.George@smud.org

SMUD | Powering forward. Together. 6201 S Street, Mail Stop B209, Sacramento, CA 95817 P.O. Box 15830, Sacramento, CA 95852-0830 Confidentiality Notice: The information in this email is for you—the recipient(s) alone. It may have privileged and confidential information. If you are not an intended recipient, do not copy, distribute or take any action that relies on it, and please notify us immediately by reply email.

Appendix B Vapor Well Borehole Logs

PROJECT NAME:	Additional Soil Vapor Investigati	ion BOF	RING LOGS	
SITE ADDRESS:	1708 59th Street		RING DIAMETER:	3.5-inch from 0' to 5'
	Sacramento, California			2.25-inch from 5' to total depth
DRILLING METHOD:	0 to 5 feet bgs Hand Auger, Remainder advanced using 2.25" 0 DPT, 1.25" DT22 plastic inner slee	Geoprobe 6600	LLER/COMPANY: DLOGIST/ENGINEER:	Confluence Environmental C57# 913194
Date Installed	7/6/2021	7/7/2021	7/6/2021	l l
Total Depth	15' 0"	15' 0"	15' 0"	
DEPTH (Feet) Sample Interval	VW58	VW59	VW60	DEPTH (Feet)
	5" Concrete	5" Concrete	3" Asphalt	- <u>-</u>
HAND AUGER	Road Base	Road Base	Road Base	- 0 <u>-</u>
	ML	SM (w/ minor gravel and cobbles)	SM	
		ML (w/sand and gravel)	ML CL	
5 -	ML (w/sand)		ML (w/sand)	- <u>-</u> - 5 -
DIRECT PUSH PROBE		ML	SM	
DIRECT	SM			
10 -		ML (w/sand)		 - 10 -
	SP/SM	SP/SM	SP (w/sitt)	
- 15 <u>-</u>				- 15 <u>-</u>

PROJECT NAME:	Additional Soil Vapor Investigat	ion	BORING LOGS	
SITE ADDRESS:	1708 59th Street	E	BORING DIAMETER:	3.5-inch from 0' to 5'
	Sacramento, California			2.25-inch from 5' to total depth
DRILLING METHOD:	0 to 5 feet bgs Hand Auger,		ORILLER/COMPANY:	Confluence Environmental
	Remainder advanced using 2.25" DPT, 1.25" DT22 plastic inner slee	Geoprobe 6600		C57# 913194
Date Installed	7/6/2021	7/7/2021	GEOLOGIST/ENGINEER: 7/7/2021	J. Rayı
Total Depth	15' 0"	15' 0"	15' 0"	
i	13 0	15 0	15 0	
DEPTH (Feet) Sample Interval	VW61	VW63	VW64	DEPTH (Feet)
	3" Asphalt	3" Asphalt	3" Asphalt	 - 0 -
HAND AUGER	Road Base	Road Base	Road Base	[- " -
# #	ML (w/sand)	ML (w/ minor gravel and cobbles)	ML (w/ minor gravel and cobbles)	
PIRECT PUSH PROBE		ML (w/sand)		- 5 <u>-</u>
	SM	(washe)	ML (w/sand)	
- 10 - 1 1 1		SP/SM		- 10 -
	SP/SM	ML	ML	
		SP	SP	
		SP/SM	Si .	<u> </u>
15 -				- 15 <u>-</u>

PROJECT	ΙΑΝ Ί	ME:	Additional Sc	il Vapor Investig	ation	BORING LO	GS			
SITE ADD			1708 59th Str	eet		BORING DIA		3.5-inch from (
			Sacramento,					2.25-inch from		th
DRILLING	ME	THOD:	0 to 5 feet bgs	s Hand Auger, Ivanced using 2.2	5" Geonrobe	DRILLER/CO	MPANY:	Confluence Er C57# 913194	vironmental	
1			6600 DPT, 1.2	25" DT22 plastic in	ner sleeve	GEOLOGIST	/ENGINEER:	J. Rayl		
Date Insta	alled				7/7/2021					
Total De	pth				26' 0"					
DEPTH (Feet)	Sample Interval				VW62					DEPTH (Feet)
				Unified Soil Cl	assification Sys	tem (USCS) GF	ROUP SYMBO	DL		
										L _
					3" Asphalt	٦				F
_ 0 _	GER									- 0
	HAND AUGER				Road Base					- - -
	1				ML					<u> </u>
					CL	=				F-
_						1				E -
_	↓									Ē -
										<u> </u>
- 5 -		1								- 5
_										E
Ξ ∃	DIRECT PUSH PROBE				ML					E -
	SHP									<u> </u>
<u>-</u> -	J. P.									F -
_ =	OIREC									-
Ξ 3	Ĭ -									Ē I
	١,					4				<u> </u>
- 10 -										- 10
- '` ∃										├ '' -
										E -
Ξ 3	*				SM					E -
										├ -
]										<u> </u>
_										<u> </u>
_ =						†				F -
_										
_ 15 _	1				6-					15
	1				SP					<u> </u>
	1									F -
_ =	1									F -
_ =	l				CL]				E .
_										E -
	1									<u> </u>
_	1				SP/SM					F -
- 20 -										- 20
	1									E ¯ ¯
_ 3						1				E -
	1									┡ -
	l									<u> </u>
										├ -
	1				SP					F -
_	l									E -
	l									E
_ 25 _	1									25
	1]				J				<u> </u>
										_

PROJECT	NAN	ΛE:	Additional Sc	oil Vapor Inves	tigation		BORING LOG	S				
SITE ADD	RES	S:	1708 59th Stre				BORING DIAM	IETER:	3.5-inch fro			
			Sacramento, 0							om 5' to tota		h
DRILLING	MET	THOD:	0 to 5 feet bgs) 25" Caarrel	6600	DRILLER/CON	IPANY:		Environme	ntal	
				lvanced using 2 Γ22 plastic inne		0000	GEOLOGIST/E	NGINEER:	C57# 9131 A. Valentin			
Date Insta	lled		1 1, 1.20 81		7/14/2021		7/14/2021	LITOIITELIN.	7 t. Vaicitill	Ĭ	I	
Total De					15' 0"		15' 0"		†			
j							1		1		1	
et)	Sample Interval										l €	61)
DEPTH (Feet)	Int				VW65		VW66				(Fe	-
<u>F</u>	Jple				5		5				E	•
DEF	San										DEPTH (Feet)	i l
	U,			Unified Soil	Classification	System (US	SCS) GROUP S	YMBOL				
						1					L	1.
					6" Asphalt		4" Asphalt				<u> </u>	
_ 0 _	ER .						ML				_ 0) -
FF	HAND AUGER				ML						F	7
\vdash \dashv	AND				(w/ sand)						F	
F 7	1										F	
											F	
<u> </u>					CL						F	
							CL					
Ь Н							02				E	_
\vdash \dashv	▼				SP						\vdash	_
\vdash \dashv											F	-
											<u> </u>	
□ 5 □											_ 5	`
ᅡᅼ					SC						L	
L 1	3BE										L	Ξ
L 크	H PR						SP				L	_
<u> </u>	. PUS										Ł	
ᆫᆸ	DIRECT PUSH PROBE										Ł	
Ŀ∃	ቯ				ML						Ł	_
<u> </u>					IVIL						Ė	Ţ
\vdash \dashv											F	7
F 7											F	7
- 10 -											- 10	0 -
╞┈┧					CL						F	٦
							CL				F	\exists
ᅡ 亅	↓										F	\exists
<u> </u>											\vdash	_
<u> </u>											E	4
두 긕					0.0						F	\dashv
F 4					SP						F	4
トゴ											<u>L</u>	
ᅡᅼ							CL				L	
							(w/sand)				<u> </u>	-
_ 15 _		I									_ 1	5 _
┝╶┤											<u>L</u>	_

Appendix C

Data Validation Summary and Validated Data Sets

SMUD 59TH STREET CORPORATION YARD SOIL GAS DATA VALIDATION SUMMARY

A total of 114 field soil gas samples, 12 field duplicate (FD) samples, and one field replicate (FR) sample were evaluated and are reported for the samples collected at the 59th Street SMUD site in Sacramento, California. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Toxic Organics (TO)-15 by Eurofins/Air Toxics in Folsom, California. Six of these samples were analyzed for helium by ASTM D-1946. The following samples were collected.

- July 8 and 9, 2021. 21 field samples and two field duplicate (FD) samples analyzed under work order (WO) 2107241A. Six of these samples were also submitted for analysis of helium as a leak check tracer compound under WO 2107241B. Elevated concentrations of leak check compound 1,1-difluoroethane (1,1-DFA) were detected in seven of these samples. Two of these samples were re-collected and analyzed and analyzed under WO 2108930. Elevated concentrations of 1,1-DFA were detected in the normal sample of the VW31B FD pair. The normal field sample was not evaluated or included but its FD is included as part of the data set.
- **July 12 and 13, 2021.** 15 samples and four FD samples analyzed under WO 2107260A. An elevated concentration of 1,1-DFA was detected in one sample but this sample was not re-collected and analyzed under WO 2108930.
- July 12 and 13, 2021. 12 samples were analyzed under WO 2107282. Elevated concentrations of 1,1-DFA were detected in four samples; one of these four samples was re-collected and analyzed under WO 2108930.
- July 14, 2021. 23 samples and three FD samples analyzed under WO 2107284. Elevated concentrations
 of 1,1-DFA were detected in six samples; five of the six samples were re-collected and analyzed under
 WO 2108930.
- July 15, 2021. 14 samples and one FD sample analyzed under WO 2107361. Elevated concentrations of 1,1-DFA were detected in six samples; five of the six samples were re-collected and analyzed under WO 2108930.
- July 15, 2021. 12 samples analyzed under WO 2107362A. Elevated concentrations of 1,1-DFA were
 detected in eight samples; five of these eight samples were re-collected and analyzed under WO
 2108930.
- **July 15, 2021.** Seven samples analyzed under WO 2107362B. Elevated concentrations of 1,1-DFA were detected in six samples; five of the six samples were re-collected and analyzed under WO 2108930.
- July 29 and 30, 2021. 10 samples and one FD sample analyzed under WO 2107684.
- August 16 and 17, 2021. 24 samples and two FD samples were re-collected and re-analyzed analyzed under WO 2108390 due to high leak check compound concentrations detected in the original samples collected in July 2021. An elevated concentration of 1,1-DFA was detected in one of these 26 samples; two replacement samples (a normal sample and FR) were collected to replace this sample and analyzed under WOs 2108676A and 2108676B.
- August 30, 2021. Two samples from VW21A were re-collected sequentially (a normal sample and FR) and analyzed under WO 2108676A and 2108676B due to a high leak check compound concentration detected in the August 17, 2021 sample. 1,1-DFA was detected at elevated concentrations in both samples.

The quality control (QC) samples analyzed to assess contamination, precision, and accuracy for the data sets include method blanks, spikes (laboratory control samples [LCSs] and surrogate spikes) and duplicates (FD and LCS duplicates). In addition, initial and continuing calibration recoveries were also reviewed.

The analytical results were validated against laboratory accuracy and precision limits in accordance with the approved methods. No systematic analytical problems were indicated by the validation process. However, during the validation process, any analytes (detected or not detected) associated with laboratory or field QC samples that do not meet the accuracy or precision limits were flagged by AECOM's project chemist. Non-detect results with estimated reporting limits (RLs) and potential false negative results are flagged "UJ," detected results that are determined to be from external contamination are flagged as not-detected (U), detected results that are determined to be estimated results are flagged "J" (a "+" or "-" would indicate a potential high or low bias, respectively), and any results (detected or not) that are associated with extreme QC issues are rejected (R) and

should not be used per USEPA guidance. For this data set, there are no estimated results with potential high bias (J+) or blank contamination (U) flagged data results.

Thirty-eight original samples had elevated concentrations of 1,1-DFA which was used as one of the leak check compounds (the detections exceeded 10 times the lowest RL of the reported analytes). Twenty-four of these 38 samples along with two FD samples were recollected and analyzed. Of the 24 samples that were re-collected, one sample had an elevated concentration of 1,1-DFA. All results that did not have leak check compound above ten times the RL from the re-analyses are reported. Additionally, two samples from VW21A were re-collected again and had detections of elevated 1,1-DFA concentrations. All results from the 12 samples that were not recollected and two samples (from the samples recollected on August 30, 2021) are qualified as potential low bias (J-), having potential false negative results at the RL (UJ), or rejected (R) due to possible dilution with ambient air. In addition, the laboratory noted that the United States Environmental Protection Agency released a document outlining possible data quality concerns for the measurement of acrolein by TO-15. All acrolein results are non-detect and are qualified as having potential false negative results (UJ) due to potential measurement issues.

From a total of 10,420 possible results (127 samples for TO-15 and 6 samples for ASTM D-1946), 1,415 results are qualified. The following bullets summarize the qualified results and Table 1 lists all qualified results.

- One hundred sixty-two results from two samples (SG-VW53B-02 and SG-VW62-01) are rejected (R). The leak check compound was detected at elevated concentrations and no target analytes were detected.
 The non-detect results for target analytes from these two samples should not be used as an indication of site characterization.
- nine hundred eighty-six results are qualified as estimated concentrations with potential low bias for detected results (J-) or potential for false negative results at the RL(UJ) because they are associated with potential leaks during sampling. Of these 986 qualified results, 53 results (31 detected results and 22 non-detect results) are qualified for additional issues. These issues include low and high laboratory control sample recoveries, initial calibration recoveries that did not meet the method requirements, FR imprecision, analytes detected above the calibration range, analytes detected below the RL and/or acrolein which was cited by EPA to have measurement issues when using Method TO-15 (see qualified data table for individual qualified results).
- One hundred thirteen non-detect acrolein results are only qualified for potential false negative results at the RLs (UJ) due to issues with the measurement of this analyte. Fourteen acrolein results are also qualified for elevated leak check compound detections.
- One hundred and one non-detect results are only qualified for potential false negative results at the RL (UJ) because the initial calibration did not meet method requirements.
- Twenty-two results (14 detected and 8 non-detect results) are qualified as estimated results (J) or potential for false negative results at the RL (UJ) due to FD imprecision.
- Thirteen results (12 non-detect and one detect result) are qualified for potential false negative results at the RL (UJ) or an estimated concentration with potential low bias (J-) because of low continuing calibration recoveries, respectively.
- Thirteen non-detect results (ethanol) are qualified as having estimated RLs due low LCS recoveries.
- Two results are qualified as estimated concentrations (J) only because they were detected above the calibration range.
- Three results are qualified as estimated concentrations (J) only because they were detected below the RL.

Samples qualified as estimated (J) because they were detected below the RL or above the calibration range are not indicative of analytical quality control issues. These results are also flagged by the laboratory. The below table provides all qualified data results.

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³)							
SG-SVM1A-01	07/29/2021 08:10	Acrolein	ND	240	1,600	UJ	5F
		lodomethane	ND	130	10,000	UJ	5A
SG-SVM1B-01	07/29/2021 08:37	Acrolein	ND	1.5	9.8	UJ	5F
		Iodomethane	ND	0.80	62	UJ	5A
SG-SVM2A-01	07/29/2021 14:12	Acrolein	ND	1.5	10	UJ	5F
	0=1001000111	Iodomethane	ND	0.83	64	UJ	5A
SG-SVM2B-01	07/29/2021 14:50	Acrolein	ND	1.4	9.3	UJ	5F
		Iodomethane	ND	0.76	59	UJ	5A
SG-SVM3A-01	07/29/2021 12:55	Acrolein	ND	1.4	9.6	UJ	5F
0000000000	0=10010001 10 01	lodomethane	ND	0.79	61	UJ	5A
SG-SVM3B-01	07/29/2021 13:21	Acrolein	ND	1.5	9.9	UJ	5F
		Iodomethane	ND	0.82	63	UJ	5A
SG-VW14-02	07/15/2021 15:58	Acrolein	ND	1.5	9.8	UJ	5F
		lodomethane	ND	0.81	62	UJ	5A
SG-VW15-02	07/14/2021 11:34	1,2,4-Trimethylbenzene	ND	2.1	5.8	UJ	3D
		1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		4-Ethyltoluene	ND	1.5	5.8	UJ	3D
		Acrolein	ND	3.2	11	UJ	5F
		Carbon Disulfide	ND	3.4	15	UJ	3D
		Ethanol	ND	2.4	22	UJ	2A-
		Ethyl Benzene	ND	0.86	5.1	UJ	3D
		m,p-Xylene	ND	2.8	5.1	UJ	3D
		Naphthalene	ND	0.81	12	UJ	5B-
00.1/14/5.00	07/44/0004 44 04	Tetrahydrofuran	9.6	0.75	3.5	J	3D
SG-VW15-03	07/14/2021 11:34	1,2,4-Trimethylbenzene	50	2.1	5.7	J	3D
		1,2-Dichloropropane	ND	1.8	5.3	UJ	5A
		4-Ethyltoluene	17 ND	1.4	5.7	J	3D
		Acrolein	ND	3.2	10	UJ	5F
		Carbon Disulfide Ethanol	46 ND	3.4 2.4	14 22	J UJ	3D 2A-
			22	0.84	5.0		3D
		Ethyl Benzene m,p-Xylene	14	2.7	5.0	J	3D
		Naphthalene	ND	0.79	12	UJ	5B-
		Tetrahydrofuran	ND	0.74	3.4	UJ	3D-
SG-VW16A-02	07/15/2021 08:30	Acrolein	ND ND	1.4	9.6	UJ	5F
3G-VW10A-02	07/13/2021 00.30	lodomethane	ND	0.79	9.0 61	UJ	5A
SG-VW16B-02	07/12/2021 13:11	Acrolein	ND ND	1.6	10	UJ	5F
SG-VW17A-03	08/16/2021 10:31	Acrolein	ND ND	1.4	9.3	UJ	5F
3G-VVV17A-03	00/10/2021 10.31	Hexane	2,400	0.65	3.6	J	6E
		lodomethane	2,400 ND	0.03	5.0 59	UJ	5A
SG-VW17B-03	07/12/2021 14:39						
3G-4 M 1 / D-03	0111212021 14.39	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND	1.5 0.47	30 6.0	UJ	4D 4D
		1,1,2,2-Tetrachloroethane	ND ND	0.47	7.6	UJ	4D 4D
		1,1,2-Trichloroethane	ND ND	0.71	7.6 6.0	UJ	4D 4D
		1,1-Dichloroethane		0.98	6.0 4.4	UJ	4D 4D
			ND				4D 4D
		1,1-Dichloroethene	ND 170	1.4	4.4	UJ	
		1,1-Difluoroethane	170	2.6	12	J-	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (α	continued)						
SG-VW17B-03	07/12/2021 14:39	1,2,3-Trichloropropane	ND	1.7	26	UJ	4D
(continued)		1,2,4-Trichlorobenzene	ND	2.9	33	UJ	4D
		1,2,4-Trimethylbenzene	ND	0.62	5.4	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	1.4	42	UJ	4D
		1,2-Dibromoethane (EDB)	ND	1.6	8.4	UJ	4D
		1,2-Dichlorobenzene	ND	0.75	6.6	UJ	4D
		1,2-Dichloroethane	ND	0.73	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.2	5.1	UJ	4D
		1,3,5-Trimethylbenzene	ND	1.1	5.4	UJ	4D
		1,3-Butadiene	ND	0.70	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.76	6.6	UJ	4D
		1,4-Dichlorobenzene	ND	0.78	6.6	UJ	4D
		1,4-Dioxane	ND	2.3	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.60	5.1	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.0	13	UJ	4D
		2-Hexanone	ND	0.43	18	UJ	4D
		2-Propanol	ND	0.81	11	UJ	4D
		3-Chloropropene	ND	3.0	14	UJ	4D
	4-Ethyltoluene	ND	1.1	5.4	UJ	4D	
		4-Methyl-2-pentanone	ND	1.1	4.5	UJ	4D
		Acetone	33	2.6	26	J-	4D
		Acrolein	ND	1.5	10	UJ	4D,5F
		Acrylonitrile	ND	0.58	9.5	UJ	4D
		alpha-Chlorotoluene	ND	0.51	5.7	UJ	4D
		Benzene	ND	0.66	3.5	UJ	4D
		Bromodichloromethane	ND	1.1	7.4	UJ	4D
		Bromoform	ND	1.2	11	UJ	4D
		Bromomethane	ND	1.8	43	UJ	4D
		Carbon Disulfide	ND	1.3	14	UJ	4D
		Carbon Tetrachloride	9.1	1.8	6.9	J-	4D
		Chlorobenzene	ND	0.46	5.1	UJ	4D
		Chloroethane	ND	3.0	12	UJ	4D
		Chloroform	570	0.46	5.4	J-	4D
		Chloromethane	ND	1.6	23	UJ	4D
		cis-1,2-Dichloroethene	ND	1.6	4.4	UJ	4D
		cis-1,3-Dichloropropene	ND	0.96	5.0	UJ	4D
		Cumene	ND	0.68	5.4	UJ	4D
		Cyclohexane	ND	0.62	3.8	UJ	4D
		Dibromochloromethane	ND	1.6	9.4	UJ	4D
		Dibromomethane	ND	1.2	31	UJ	4D
		Ethanol	ND	2.6	21	UJ	4D
		Ethyl Acetate	ND	0.93	16	UJ	4D
		Ethyl Benzene	ND	1.2	4.8	UJ	4D
		Ethyl- <i>tert</i> -butyl ether	ND	0.97	18	UJ	4D
		Freon 11	ND	1.3	6.2	UJ	4D
		Freon 12	ND	0.86	5.4	UJ	4D
		Freon 113	ND	1.3	8.4	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (continued)						
SG-VW17B-03	07/12/2021 14:39	Freon 114	ND	1.4	7.7	UJ	4D
(continued)		Freon 134a	ND	2.3	18	UJ	4D
		Heptane	ND	1.1	4.5	UJ	4D
		Hexachlorobutadiene	ND	4.3	47	UJ	4D
		Hexachloroethane	ND	43	43	UJ	4D
		Hexane	ND	0.71	3.9	UJ	4D
		Iodomethane	ND	0.83	64	UJ	4D
		Isopropyl ether	ND	0.54	18	UJ	4D
		m,p-Xylene	ND	1.1	4.8	UJ	4D
		Methyl tert-butyl ether	ND	0.85	16	UJ	4D
		Methylene Chloride	ND	0.79	38	UJ	4D
		Naphthalene	ND	4.4	12	UJ	4D
		o-Xylene	ND	1.2	4.8	UJ	4D
		Propylbenzene	ND	0.90	5.4	UJ	4D
		Propylene	ND	0.56	7.6	UJ	4D
		Styrene	ND	0.61	4.7	UJ	4D
		tert-Amyl methyl ether	ND	1.9	18	UJ	4D
		tert-Butyl alcohol	ND	0.92	13	UJ	4D
		Tetrachloroethene	200	1.2	7.5	J-	4D
		Tetrahydrofuran	ND	0.66	3.2	UJ	4D
		Toluene	ND	0.43	4.1	UJ	4D
		TPH - Gasoline	ND	450	450	UJ	4D
		trans-1,2-Dichloroethene	ND	1.1	4.4	UJ	4D
		trans-1,3-Dichloropropene	ND	0.87	5.0	UJ	4D
		Trichloroethene	ND	0.85	5.9	UJ	4D
		Vinyl Acetate	ND	4.2	15	UJ	4D
		Vinyl Bromide	ND	1.3	19	UJ	4D
		Vinyl Chloride	ND	0.71	2.8	UJ	4D
SG-VW18A-02	07/15/2021 09:12	Acrolein	ND	1.4	9.6	UJ	5F
00-7771077-02	01/10/2021 03.12	lodomethane	ND	0.79	61	UJ	5A
SG-VW18B-02	07/12/2021 15:32	Acrolein	ND	1.5	10	UJ	5F
SG-VW19A-02	07/13/2021 07:23	Acrolein	ND ND	1.4	9.3	UJ	5F
SG-VW19A-02 SG-VW19B-02	07/13/2021 07:23	1.1.1.2-Tetrachloroethane	ND ND	1.6	31	UJ	4D
3G-77719D-02	07/13/2021 00.11	1,1,1-Trichloroethane	ND	0.49	6.2	UJ	4D 4D
		1,1,2,2-Tetrachloroethane	ND	0.49	7.8	UJ	4D 4D
		1,1,2-Trichloroethane	ND	1.0	6.2	UJ	4D
		1,1-Dichloroethane	ND	0.96	4.6	UJ	4D
		1,1-Dichloroethene	ND	1.5	4.5	UJ	4D
		1,1-Difluoroethane	1,200	2.7	12	J-	4D
		1,2,3-Trichloropropane	ND	1.7	27	UJ	4D
		1,2,4-Trichlorobenzene	ND	3.0	34	UJ	4D
		1,2,4-Trimethylbenzene	ND	0.65	5.6	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	1.4	44	UJ	4D
		1,2-Dibromoethane (EDB)	ND	1.7	8.8	UJ	4D
		1,2-Dichlorobenzene	ND	0.77	6.8	UJ	4D
		1,2-Dichloroethane	ND	0.76	4.6	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW19B-02	07/13/2021 08:11	1,2-Dichloropropane	ND	1.2	5.3	UJ	4D
(continued)		1,3,5-Trimethylbenzene	ND	1.2	5.6	UJ	4D
		1,3-Butadiene	ND	0.73	2.5	UJ	4D
		1,3-Dichlorobenzene	ND	0.78	6.8	UJ	4D
		1,4-Dichlorobenzene	ND	0.81	6.8	UJ	4D
		1,4-Dioxane	ND	2.4	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.62	5.3	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.0	13	UJ	4D
		2-Hexanone	ND	0.45	19	UJ	4D
		2-Propanol	ND	0.84	11	UJ	4D
		3-Chloropropene	ND	3.1	14	UJ	4D
		4-Ethyltoluene	ND	1.1	5.6	UJ	4D
		4-Methyl-2-pentanone	ND	1.1	4.7	UJ	4D
		Acetone	31	2.7	27	J-	4D
		Acrolein	ND	1.6	10	UJ	4D,5F
		Acrylonitrile	ND	0.60	9.9	UJ	4D
		alpha-Chlorotoluene	ND	0.53	5.9	UJ	4D
		Benzene	ND	0.69	3.6	UJ	4D
		Bromodichloromethane	ND	1.1	7.6	UJ	4D
		Bromoform	ND	1.2	12	UJ	4D
		Bromomethane	ND	1.9	44	UJ	4D
		Carbon Disulfide	ND	1.4	14	UJ	4D
		Carbon Tetrachloride	ND	1.9	7.2	UJ	4D
		Chlorobenzene	ND	0.48	5.2	UJ	4D
		Chloroethane	ND	3.1	12	UJ	4D
		Chloroform	59	0.48	5.6	J-	4D
		Chloromethane	ND	1.6	24	UJ	4D
		cis-1,2-Dichloroethene	ND	1.6	4.5	UJ	4D
		cis-1,3-Dichloropropene	ND	1.0	5.2	UJ	4D
		Cumene	ND	0.71	5.6	UJ	4D
		Cyclohexane	ND	0.64	3.9	UJ	4D
		Dibromochloromethane	ND	1.6	9.7	UJ	4D
		Dibromomethane	ND	1.2	32	UJ	4D
		Ethanol	ND	2.6	21	UJ	4D
		Ethyl Acetate	ND	0.96	16	UJ	4D
		Ethyl Benzene	ND	1.3	4.9	UJ	4D
		Ethyl- <i>tert</i> -butyl ether	ND	1.0	19	UJ	4D
		Freon 11	14	1.4	6.4	J-	4D
		Freon 12	67	0.89	5.6	J-	4D
		Freon 113	ND	1.4	8.7	UJ	4D
		Freon 114	ND	1.4	8.0	UJ	4D
		Freon 134a	ND	2.3	19	UJ	4D
		Heptane	ND	1.1	4.7	UJ	4D
		Hexachlorobutadiene	ND	4.5	49	UJ	4D
		Hexachloroethane	ND	44	44	UJ	4D
		Hexane	ND	0.73	4.0	UJ	4D
		Iodomethane	ND	0.86	66	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (c							
SG-VW19B-02	07/13/2021 08:11	Isopropyl ether	ND	0.56	19	UJ	4D
(continued)		m,p-Xylene	ND	1.1	5.0	UJ	4D
		Methyl tert-butyl ether	ND	0.88	16	UJ	4D
		Methylene Chloride	ND	0.81	40	UJ	4D
		Naphthalene	ND	4.6	12	UJ	4D
		o-Xylene	ND	1.2	5.0	UJ	4D
		Propylbenzene	ND	0.93	5.6	UJ	4D
		Propylene	ND	0.58	7.8	UJ	4D
		Styrene	ND	0.63	4.8	UJ	4D
		tert-Amyl methyl ether	ND	2.0	19	UJ	4D
		tert-Butyl alcohol	ND	0.96	14	UJ	4D
		Tetrachloroethene	260	1.2	7.7	J-	4D
		Tetrahydrofuran	ND	0.68	3.4	UJ	4D
		Toluene	ND	0.44	4.3	UJ	4D
		TPH - Gasoline	ND	470	470	UJ	4D
		trans-1,2-Dichloroethene	ND	1.2	4.5	UJ	4D
		trans-1,3-Dichloropropene	ND	0.90	5.2	UJ	4D
		Trichloroethene	ND	0.88	6.1	UJ	4D
		Vinyl Acetate	ND	4.3	16	UJ	4D
		Vinyl Bromide	ND	1.4	20	UJ	4D
		Vinyl Chloride	ND	0.74	2.9	UJ	4D
SG-VW20A-03	08/17/2021 07:07	Acrolein	ND	1.4	9.1	UJ	5F
		Iodomethane	ND	0.75	57	UJ	5A
SG-VW20B-02	07/15/2021 09:47	1,1,1,2-Tetrachloroethane	ND	200	3,900	UJ	4D
		1,1,1-Trichloroethane	ND	60	770	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	91	970	UJ	4D
		1,1,2-Trichloroethane	ND	120	770	UJ	4D
		1,1-Dichloroethane	ND	120	570	UJ	4D
		1,1-Dichloroethene	ND	180	560	UJ	4D
		1,1-Difluoroethane	98,000	330	1,500	J-	4D
		1,2,3-Trichloropropane	ND	210	3,400	UJ	4D
		1,2,4-Trichlorobenzene	ND	370	4,200	UJ	4D
		1,2,4-Trimethylbenzene	ND	80	690	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	180	5,400	UJ	4D
		1,2-Dibromoethane (EDB)	ND	210	1,100	UJ	4D
		1,2-Dichlorobenzene	ND	96	850	UJ	4D
		1,2-Dichloroethane	ND	94	570	UJ	4D
		1,2-Dichloropropane	ND	160	650	UJ	4D
		1,3,5-Trimethylbenzene	ND	140	690	UJ	4D
		1,3-Butadiene	ND	90	310	UJ	4D
		1,3-Dichlorobenzene	ND	97	850	UJ	4D
		1,4-Dichlorobenzene	ND	100	850	UJ	4D
		1,4-Dioxane	ND	300	2,000	UJ	4D
		2,2,4-Trimethylpentane	ND	77	660	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	250	1,700	UJ	4D
		2-Hexanone	ND	55	2,300	UJ	4D
		2-Propanol	ND	100	1,400	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW20B-02	07/15/2021 09:47	3-Chloropropene	ND	380	1,800	UJ	4D
(continued)		4-Ethyltoluene	ND	140	690	UJ	4D
		4-Methyl-2-pentanone	790	140	580	J-	4D
		Acetone	ND	330	3,300	UJ	4D
		Acrolein	ND	190	1,300	UJ	4D,5F
		Acrylonitrile	ND	75	1,200	UJ	4D
		alpha-Chlorotoluene	ND	66	730	UJ	4D
		Benzene	ND	85	450	UJ	4D
		Bromodichloromethane	ND	140	940	UJ	4D
		Bromoform	ND	150	1,400	UJ	4D
		Bromomethane	ND	240	5,500	UJ	4D
		Carbon Disulfide	ND	170	1,800	UJ	4D
		Carbon Tetrachloride	ND	230	890	UJ	4D
		Chlorobenzene	ND	59	650	UJ	4D
		Chloroethane	ND	380	1,500	UJ	4D
		Chloroform	ND	59	690	UJ	4D
		Chloromethane	ND	200	2,900	UJ	4D
		cis-1,2-Dichloroethene	ND	200	560	UJ	4D
		cis-1,3-Dichloropropene	ND	120	640	UJ	4D
		Cumene	ND	87	690	UJ	4D
		Cyclohexane	ND	80	480	UJ	4D
		Dibromochloromethane	ND	200	1,200	UJ	4D
		Dibromomethane	ND	150	4,000	UJ	4D
		Ethanol	ND	330	2,600	UJ	4D
		Ethyl Acetate	ND	120	2,000	UJ	4D
		Ethyl Benzene	ND	160	610	UJ	4D
		Ethyl-tert-butyl ether	ND	120	2,400	UJ	4D
		Freon 11	ND	170	790	UJ	4D
		Freon 12	ND	110	700	UJ	4D
		Freon 113	ND	170	1,100	UJ	4D
		Freon 114	ND	180	980	UJ	4D
		Freon 134a	ND	290	2,400	UJ	4D
		Heptane	ND	140	580	UJ	4D
		Hexachlorobutadiene	ND	550	6,000	UJ	4D
		Hexachloroethane	ND	5,500	5,500	UJ	4D
		Hexane	ND	91	500	UJ	4D
		lodomethane	ND	110	8,200	UJ	4D,5A
		Isopropyl ether	ND	70	2,400	UJ	4D
		m,p-Xylene	ND	140	610	UJ	4D
		Methyl tert-butyl ether	ND	110	2,000	UJ	4D
		Methylene Chloride	ND	100	4,900	UJ	4D
		Naphthalene	ND	570	1,500	UJ	4D
		o-Xylene	ND	150	610	UJ	4D
		Propylbenzene	ND	120	690	UJ	4D
		Propylene	ND	72	970	UJ	4D
		Styrene	ND	78	600	UJ	4D
		tert-Amyl methyl ether	ND	250	2,400	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (continued)						
SG-VW20B-02	07/15/2021 09:47	tert-Butyl alcohol	ND	120	1,700	UJ	4D
(continued)		Tetrachloroethene	ND	150	960	UJ	4D
		Tetrahydrofuran	ND	84	420	UJ	4D
		Toluene	ND	55	530	UJ	4D
		TPH - Gasoline	ND	58,000	58,000	UJ	4D
		trans-1,2-Dichloroethene	ND	140	560	UJ	4D
		trans-1,3-Dichloropropene	ND	110	640	UJ	4D
		Trichloroethene	ND	110	760	UJ	4D
		Vinyl Acetate	ND	540	2,000	UJ	4D
		Vinyl Bromide	ND	170	2,500	UJ	4D
		Vinyl Chloride	ND	91	360	UJ	4D
SG-VW21A-05	08/30/2021 10:59	1,1,1,2-Tetrachloroethane	ND	1.5	30	UJ	4D
		1,1,1-Trichloroethane	6.0	0.47	6.0	J-	4D
		1,1,2,2-Tetrachloroethane	ND	0.70	7.5	UJ	4D
		1,1,2-Trichloroethane	ND	0.96	6.0	UJ	4D
		1,1-Dichloroethane	ND	0.92	4.4	UJ	4D
		1,1-Dichloroethene	ND	1.4	4.3	UJ	4D
		1,1-Difluoroethane	49	2.6	12	J-	4D
		1,2,3-Trichloropropane	ND	1.6	26	UJ	4D
		1,2,4-Trichlorobenzene	ND	2.9	32	UJ	4D
		1,2,4-Trimethylbenzene	8.5	0.62	5.4	J-	4D,2A+
		1,2-Dibromo-3-chloropropane	ND	1.4	42	UJ	4D
		1,2-Dibromoethane (EDB)	ND	1.6	8.4	UJ	4D
		1,2-Dichlorobenzene	ND	0.74	6.6	UJ	4D
		1,2-Dichloroethane	ND	0.73	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.2	5.1	UJ	4D
		1,3,5-Trimethylbenzene	3.8	1.1	5.4	J-	4D,6G
		1,3-Butadiene	ND	0.70	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.75	6.6	UJ	4D
		1,4-Dichlorobenzene	ND	0.78	6.6	UJ	4D
		1,4-Dioxane	ND	2.3	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.60	5.1	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	7.6	2.0	13	J-	4D,6G
		2-Hexanone	0.72	0.43	18	J-	4D,6G
		2-Propanol	16	0.81	11	J-	4D,3E
		3-Chloropropene	ND	3.0	14	UJ	4D
		4-Ethyltoluene	7.2	1.1	5.4	J-	4D
		4-Methyl-2-pentanone	ND	1.1	4.5	UJ	4D
		Acetone	32	2.6	26	J-	4D,3E
		Acrolein	ND	1.5	10	UJ	4D,5F
		Acrylonitrile	ND	0.58	9.5	UJ	4D
		alpha-Chlorotoluene	ND	0.51	5.7	UJ	4D
		Benzene	3.1	0.66	3.5	J-	4D,6G
		Bromodichloromethane	ND	1.1	7.3	UJ	4D
		Bromoform	ND	1.2	11	UJ	4D
		Bromomethane	ND	1.8	42	UJ	4D
		Carbon Disulfide	2.9	1.3	14	J-	4D,6G

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW21A-05	08/30/2021 10:59	Carbon Tetrachloride	ND	1.8	6.9	UJ	4D
(continued)		Chlorobenzene	ND	0.46	5.0	UJ	4D
		Chloroethane	ND	3.0	12	UJ	4D
		Chloroform	9.1	0.46	5.3	J-	4D
		Chloromethane	ND	1.6	23	UJ	4D
		cis-1,2-Dichloroethene	ND	1.6	4.3	UJ	4D
		cis-1,3-Dichloropropene	ND	0.96	5.0	UJ	4D
		Cumene	ND	0.68	5.4	UJ	4D
		Cyclohexane	ND	0.62	3.8	UJ	4D
		Dibromochloromethane	ND	1.6	9.3	UJ	4D
		Dibromomethane	ND	1.2	31	UJ	4D
		Ethanol	7.1	2.6	21	J-	4D,6G
		Ethyl Acetate	ND	0.92	16	UJ	4D
		Ethyl Benzene	2.4	1.2	4.8	J-	4D,6G
		Ethyl- <i>tert</i> -butyl ether	ND	0.96	18	UJ	4D
		Freon 11	1.8	1.3	6.2	J-	4D,6G
		Freon 12	ND	0.86	5.4	UJ	4D,3E
		Freon 113	ND	1.3	8.4	UJ	4D
		Freon 114	ND	1.4	7.6	UJ	4D
		Freon 134a	ND	2.2	18	UJ	4D
		Heptane	ND	1.1	4.5	UJ	4D
		Hexachlorobutadiene	ND	4.3	47	UJ	4D
		Hexachloroethane	ND	42	42	UJ	4D
		Hexane	52	0.70	3.8	J-	4D,3E
		Iodomethane	ND	0.83	64	UJ	4D,5A
		Isopropyl ether	ND	0.54	18	UJ	4D
		m,p-Xylene	6.5	1.1	4.8	J-	4D
		Methyl tert-butyl ether	ND	0.85	16	UJ	4D
		Methylene Chloride	ND	0.78	38	UJ	4D
		Naphthalene	ND	4.4	11	UJ	4D
		o-Xylene	3.1	1.2	4.8	J-	4D,6G
		Propylbenzene	1.5	0.89	5.4	J-	4D,6G
		Propylene	ND	0.56	7.5	UJ	4D
		Styrene	ND	0.60	4.7	UJ	4D
		tert-Amyl methyl ether	ND	1.9	18	UJ	4D
		tert-Butyl alcohol	ND	0.92	13	UJ	4D
		Tetrachloroethene	170	1.2	7.4	J-	4D
		Tetrahydrofuran	1.6	0.65	3.2	J-	4D,6G
		Toluene	13	0.42	4.1	J-	4D
		TPH - Gasoline	ND	450	450	UJ	4D,3E
		trans-1,2-Dichloroethene	ND	1.1	4.3	UJ	4D
		trans-1,3-Dichloropropene	ND	0.86	5.0	UJ	4D
		Trichloroethene	23	0.85	5.9	J-	4D
		Vinyl Acetate	ND	4.2	15	ÜJ	4D
		Vinyl Bromide	ND	1.3	19	UJ	4D
		Vinyl Chloride	ND	0.71	2.8	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)				· 		-
SG-VW21A-06	08/30/2021 11:25	1,1,1,2-Tetrachloroethane	ND	1.1	30	UJ	4D
		1,1,1-Trichloroethane	5.2	0.73	6.0	J-	4D,6G
		1,1,2,2-Tetrachloroethane	ND	0.59	7.6	UJ	4D
		1,1,2-Trichloroethane	ND	0.82	6.0	UJ	4D
		1,1-Dichloroethane	ND	0.59	4.5	UJ	4D
		1,1-Dichloroethene	ND	0.92	4.4	UJ	4D
		1,1-Difluoroethane	48	2.3	12	J-	4D
		1,2,3-Trichloropropane	ND	2.0	27	UJ	4D
		1,2,4-Trichlorobenzene	ND	3.7	33	UJ	4D
		1,2,4-Trimethylbenzene	9.2	2.0	5.4	J-	4D
		1,2-Dibromo-3-chloropropane	ND	4.1	43	UJ	4D
		1,2-Dibromoethane (EDB)	ND	0.72	8.5	UJ	4D
		1,2-Dichlorobenzene	ND	0.57	6.7	UJ	4D
		1,2-Dichloroethane	ND	0.90	4.5	UJ	4D
		1,2-Dichloropropane	ND	1.7	5.1	UJ	4D
		1,3,5-Trimethylbenzene	3.7	0.85	5.4	J-	4D,6G
		1,3-Butadiene	ND	0.81	2.4	UJ	4D,2A-,5A
		1,3-Dichlorobenzene	ND	0.85	6.7	UJ	4D
		1,4-Dichlorobenzene	ND	0.43	6.7	UJ	4D
		1,4-Dioxane	ND	0.79	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.40	5.2	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	4.9	2.3	13	J-	4D,6G
		2-Hexanone	ND	1.5	18	UJ	4D
		2-Propanol	8.7	0.73	11	J-	4D,6G,3E
		3-Chloropropene	ND	1.4	14	UJ	4D
		4-Ethyltoluene	7.1	1.4	5.4	J-	4D
		4-Methyl-2-pentanone	ND	0.68	4.5	UJ	4D
		Acetone	18	1.9	26	J-	4D,6G,3E
		Acrolein	ND	3.1	10	UJ	4D,5F
		Acrylonitrile	ND	0.91	9.6	UJ	4D
		alpha-Chlorotoluene	ND	0.46	5.7	UJ	4D
		Benzene	2.6	0.27	3.5	J-	4D,6G
		Bromodichloromethane	ND	1.4	7.4	UJ	4D
		Bromoform	ND	0.99	11	UJ	4D
		Bromomethane	ND	1.9	43	UJ	4D
		Carbon Disulfide	6.1	3.2	14	J-	4D,6G
		Carbon Tetrachloride	ND	1.1	7.0	UJ	4D
		Chlorobenzene	ND	0.45	5.1	UJ	4D
		Chloroethane	ND	2.4	12	UJ	4D
		Chloroform	8.6	0.64	5.4	J-	4D
		Chloromethane	ND	2.4	23	UJ	4D
		cis-1,2-Dichloroethene	ND	0.79	4.4	UJ	4D
		cis-1,3-Dichloropropene	ND	0.73	5.0	UJ	4D
		Cumene	ND	0.70	5.4	UJ	4D
		Cyclohexane	ND	0.82	3.8	UJ	4D
		Dibromochloromethane	ND	1.3	9.4	UJ	4D
		Dibromomethane	ND	1.5	32	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW21A-06	08/30/2021 11:25	Ethanol	4.6	2.3	21	J-	4D,6G
(continued)		Ethyl Acetate	ND	4.6	16	UJ	4D
		Ethyl Benzene	1.9	0.81	4.8	J-	4D,6G
		Ethyl-tert-butyl ether	ND	1.4	18	UJ	4D
		Freon 11	1.4	0.72	6.2	J-	4D,6G
		Freon 12	17	0.99	5.5	J-	4D,3E
		Freon 113	ND	1.3	8.5	UJ	4D
		Freon 114	ND	1.1	7.8	UJ	4D
		Freon 134a	ND	2.5	18	UJ	4D
		Heptane	ND	0.81	4.5	UJ	4D
		Hexachlorobutadiene	ND	5.2	47	UJ	4D
		Hexachloroethane	ND	43	43	UJ	4D
		Hexane	31	0.72	3.9	J-	4D,3E
		Iodomethane	ND	3.5	64	UJ	4D
		Isopropyl ether	ND	1.2	18	UJ	4D
		m,p-Xylene	7.4	2.6	4.8	J-	4D
		Methyl tert-butyl ether	ND	0.98	16	UJ	4D
		Methylene Chloride	ND	2.2	38	UJ	4D
		Naphthalene	ND	0.76	12	UJ	4D
		o-Xylene	3.6	1.3	4.8	J-	4D,6G
		Propylbenzene	1.6	0.89	5.4	J-	4D,6G
		Propylene	ND	1.4	7.6	UJ	4D
		Styrene	ND	0.55	4.7	UJ	4D
		tert-Amyl methyl ether	ND	2.7	18	UJ	4D
		tert-Butyl alcohol	ND	1.2	13	UJ	4D
		Tetrachloroethene	150	1.3	7.5	J-	4D
		Tetrahydrofuran	ND	0.71	3.3	UJ	4D
		Toluene	12	1.0	4.2	J-	4D
		TPH - Gasoline	530	450	450	J-	4D,3E
		trans-1,2-Dichloroethene	ND	1.8	4.4	UJ	4D
		trans-1,3-Dichloropropene	ND	0.69	5.0	UJ	4D
		Trichloroethene	20	0.75	6.0	J-	4D
		Vinyl Acetate	ND	3.1	16	UJ	4D
		Vinyl Bromide	ND	1.6	19	UJ	4D
		Vinyl Chloride	ND	1.1	2.8	UJ	4D
SG-VW21B-02	07/15/2021 14:55	Acrolein	ND	1.5	9.8	UJ	5F
		Iodomethane	ND	0.81	62	UJ	5A
SG-VW22A-02	07/14/2021 12:40	1,2-Dichloropropane	ND	1.7	5.0	UJ	5A
		2-Propanol	11	0.72	11	J	6G
		Acrolein	ND	3.0	10	UJ	5F
SG-VW22B-02	07/14/2021 13:10	1,1,1,2-Tetrachloroethane	ND	1.1	30	UJ	4D
		1,1,1-Trichloroethane	ND	0.71	5.9	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	0.58	7.4	UJ	4D
		1,1,2-Trichloroethane	ND	0.80	5.9	UJ	4D
		1,1-Dichloroethane	ND	0.57	4.4	UJ	4D
		1,1-Dichloroethene	ND	0.89	4.3	UJ	4D
		1,1-Difluoroethane	48	2.2	12	J-	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (σ	continued)						
SG-VW22B-02	07/14/2021 13:10	1,2,3-Trichloropropane	ND	2.0	26	UJ	4D
(continued)		1,2,4-Trichlorobenzene	ND	3.6	32	UJ	4D
		1,2,4-Trimethylbenzene	ND	2.0	5.3	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	4.0	42	UJ	4D
		1,2-Dibromoethane (EDB)	ND	0.70	8.3	UJ	4D
		1,2-Dichlorobenzene	ND	0.55	6.5	UJ	4D
		1,2-Dichloroethane	ND	0.87	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.7	5.0	UJ	4D,5A
		1,3,5-Trimethylbenzene	ND	0.82	5.3	UJ	4D
		1,3-Butadiene	ND	0.78	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.83	6.5	UJ	4D
		1,4-Dichlorobenzene	ND	0.42	6.5	UJ	4D
		1,4-Dioxane	ND	0.77	15	UJ	4D
		2,2,4-Trimethylpentane	ND	0.39	5.0	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.2	13	UJ	4D
		2-Hexanone	ND	1.5	18	UJ	4D
		2-Propanol	12	0.71	10	J-	4D
		3-Chloropropene	ND	1.4	13	UJ	4D
		4-Ethyltoluene	ND	1.3	5.3	UJ	4D
		4-Methyl-2-pentanone	ND	0.66	4.4	UJ	4D
		Acetone	46	1.8	26	J-	4D
		Acrolein	ND	3.0	9.8	UJ	4D,5F
		Acrylonitrile	ND	0.88	9.3	UJ	4D
		alpha-Chlorotoluene	ND	0.45	5.6	UJ	4D
		Benzene	ND	0.26	3.4	UJ	4D
		Bromodichloromethane	ND	1.4	7.2	UJ	4D
		Bromoform	ND	0.96	11	UJ	4D
		Bromomethane	ND	1.9	42	UJ	4D
		Carbon Disulfide	ND	3.1	13	UJ	4D
		Carbon Tetrachloride	ND	1.1	6.8	UJ	4D
		Chlorobenzene	ND	0.43	4.9	UJ	4D
		Chloroethane	ND	2.3	11	UJ	4D
		Chloroform	26	0.62	5.2	J-	4D
		Chloromethane	ND	2.4	22	UJ	4D
		cis-1,2-Dichloroethene	ND	0.77	4.3	UJ	4D
		cis-1,3-Dichloropropene	ND	0.71	4.9	UJ	4D
		Cumene	ND	0.67	5.3	UJ	4D
		Cyclohexane	ND	0.79	3.7	UJ	4D
		Dibromochloromethane	ND	1.3	9.2	UJ	4D
		Dibromomethane	ND	1.5	30	UJ	4D
		Ethanol	39	2.2	20	J-	4D
		Ethyl Acetate	ND	4.4	15	UJ	4D
		Ethyl Benzene	ND	0.78	4.7	UJ	4D
		Ethyl-tert-butyl ether	ND	1.3	18	UJ	4D
		Freon 11	ND	0.69	6.0	UJ	4D
		Freon 12	ND	0.96	5.3	UJ	4D
		Freon 113	ND	1.3	8.2	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (continued)						
SG-VW22B-02	07/14/2021 13:10	Freon 134a	ND	2.4	18	UJ	4D
(continued)		Heptane	ND	0.79	4.4	UJ	4D
		Hexachlorobutadiene	ND	5.1	46	UJ	4D
		Hexachloroethane	ND	42	42	UJ	4D
		Hexane	ND	0.70	3.8	UJ	4D
		Iodomethane	ND	3.4	62	UJ	4D
		Isopropyl ether	ND	1.2	18	UJ	4D
		m,p-Xylene	ND	2.6	4.7	UJ	4D
		Methyl tert-butyl ether	ND	0.95	16	UJ	4D
		Methylene Chloride	ND	2.1	37	UJ	4D
		Naphthalene	ND	0.73	11	UJ	4D
		o-Xylene	ND	1.2	4.7	UJ	4D
		Propylbenzene	ND	0.29	5.3	UJ	4D
		Propylene	ND	1.4	7.4	UJ	4D
		Styrene	ND	0.53	4.6	UJ	4D
		tert-Amyl methyl ether	ND	2.6	18	UJ	4D
		tert-Butyl alcohol	ND	1.2	13	UJ	4D
		Tetrachloroethene	150	1.3	7.3	J-	4D
		Tetrahydrofuran	ND	0.68	3.2	UJ	4D
		Toluene	23	0.98	4.0	J-	4D
		TPH - Gasoline	ND	440	440	UJ	4D
		trans-1,2-Dichloroethene	ND	1.8	4.3	UJ	4D
		trans-1,3-Dichloropropene	ND	0.67	4.9	UJ	4D
		Trichloroethene	11	0.73	5.8	J-	4D
		Vinyl Acetate	ND	3.0	15	UJ	4D
		Vinyl Bromide	ND	1.5	19	UJ	4D
		Vinyl Chloride	ND	1.1	2.7	UJ	4D
SG-VW23B-02	07/14/2021 11:37	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
		Acrolein	ND	2.9	9.8	UJ	5F
SG-VW24A-05	08/17/2021 08:25	Acrolein	ND	1.4	9.3	UJ	5F
		Iodomethane	ND	0.76	59	UJ	5A
SG-VW24B-02	07/14/2021 09:47	1,2-Dichloropropane	ND	1.9	5.6	UJ	5A
		Acrolein	ND	3.3	11	UJ	5F
SG-VW25A-02	07/13/2021 12:50	Acrolein	ND	1.7	11	UJ	5F
SG-VW25B-02	07/13/2021 13:18	Acrolein	ND	1.6	11	UJ	5F
SG-VW26A-02	07/09/2021 15:03	1,2-Dichloropropane	ND	1.2	4.8	UJ	5A
00 11120/102	0170072021 10.00	Acrolein	ND	1.4	9.6	UJ	5F
SG-VW26B-02	07/15/2021 07:48	Acrolein	ND	1.4	9.1	UJ	5F
00-777200-02	01/10/2021 01.40	Iodomethane	ND	0.75	57	UJ	5A
SG-VW27A-02	07/15/2021 06:03	Acrolein	ND ND	1.5	9.8	UJ	5F
3G-VVV21A-02	07/13/2021 00.03	lodomethane	ND	0.81	62	UJ	5A
SC \/\/\27P 02	07/15/2021 06:44					UJ	5F
SG-VW27B-02	07/13/2021 00.44	Acrolein	ND	1.4	9.4 60		
CC \/\/\07D 00	07/45/2004 00:44	Iodomethane	ND	0.78	60	UJ	5A
SG-VW27B-03	07/15/2021 06:44	Acrolein	ND	1.4	9.4	UJ	5F
00 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	07/45/0004 45 04	lodomethane	ND	0.78	60	UJ	5A
SG-VW28A-02	07/15/2021 15:31	Acrolein	ND	1.6	11	UJ	5F
		Iodomethane	ND	88.0	68	UJ	5A

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (σ	continued)						
SG-VW28B-02	07/15/2021 13:50	1,1,1,2-Tetrachloroethane	ND	8.5	230	UJ	4D
		1,1,1-Trichloroethane	ND	5.5	46	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	4.5	58	UJ	4D
		1,1,2-Trichloroethane	ND	6.2	46	UJ	4D
		1,1-Dichloroethane	ND	4.4	34	UJ	4D
		1,1-Dichloroethene	ND	6.9	33	UJ	4D
		1,1-Difluoroethane	6,300	17	91	J-	4D
		1,2,3-Trichloropropane	ND	15	200	UJ	4D
		1,2,4-Trichlorobenzene	ND	28	250	UJ	4D
		1,2,4-Trimethylbenzene	ND	15	41	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	31	320	UJ	4D
		1,2-Dibromoethane (EDB)	ND	5.4	64	UJ	4D
		1,2-Dichlorobenzene	ND	4.3	50	UJ	4D
		1,2-Dichloroethane	ND	6.8	34	UJ	4D
		1,2-Dichloropropane	ND	13	39	UJ	4D,5A
		1,3,5-Trimethylbenzene	ND	6.4	41	UJ	4D
		1,3-Butadiene	ND	6.1	18	UJ	4D
		1,3-Dichlorobenzene	ND	6.5	50	UJ	4D
		1,4-Dichlorobenzene	ND	3.3	50	UJ	4D
		1,4-Dioxane	ND	6.0	120	UJ	4D
		2,2,4-Trimethylpentane	ND	3.0	39	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	17	99	UJ	4D
		2-Hexanone	ND	12	140	UJ	4D
		2-Propanol	ND	5.5	82	UJ	4D
		3-Chloropropene	ND	11	100	UJ	4D
		4-Ethyltoluene	ND	10	41	UJ	4D
		4-Methyl-2-pentanone	ND	5.2	34	UJ	4D
		Acetone	ND	14	200	UJ	4D
		Acrolein	ND	23	77	UJ	4D,5F
		Acrylonitrile	ND	6.9	73	UJ	4D
		alpha-Chlorotoluene	ND	3.5	43	UJ	4D
		Benzene	ND	2.0	27	UJ	4D
		Bromodichloromethane	ND	11	56	UJ	4D
		Bromoform	ND	7.5	87	UJ	4D
		Bromomethane	ND	15	330	UJ	4D
		Carbon Disulfide	ND	24	100	UJ	4D
		Carbon Tetrachloride	ND	8.6	53	UJ	4D
		Chlorobenzene	ND	3.4	39	UJ	4D
		Chloroethane	ND	18	89	UJ	4D
		Chloroform	ND	4.8	41	UJ	4D
		Chloromethane	ND	18	170	UJ	4D
		cis-1,2-Dichloroethene	ND	6.0	33	UJ	4D
		cis-1,3-Dichloropropene	ND	5.5	38	UJ	4D
		Cumene	ND	5.3	41	UJ	4D
		Cyclohexane	ND	6.2	29	UJ	4D
		Dibromochloromethane	ND	10	72	UJ	4D
		Dibromomethane	ND	12	240	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (
SG-VW28B-02	07/15/2021 13:50	Ethanol	ND	17	160	UJ	4D
(continued)		Ethyl Acetate	ND	35	120	UJ	4D
		Ethyl Benzene	ND	6.1	36	UJ	4D
		Ethyl-tert-butyl ether	ND	10	140	UJ	4D
		Freon 11	ND	5.4	47	UJ	4D
		Freon 12	ND	7.5	42	UJ	4D
		Freon 113	ND	10	64	UJ	4D
		Freon 114	ND	8.1	59	UJ	4D
		Freon 134a	ND	19	140	UJ	4D
		Heptane	ND	6.2	34	UJ	4D
		Hexachlorobutadiene	ND	40	360	UJ	4D
		Hexachloroethane	ND	320	320	UJ	4D
		Hexane	ND	5.5	30	UJ	4D
		lodomethane	ND	27	490	UJ	4D
		Isopropyl ether	ND	9.4	140	UJ	4D
		m,p-Xylene	ND	20	36	UJ	4D
		Methyl tert-butyl ether	ND	7.4	120	UJ	4D
		Methylene Chloride	ND	16	290	UJ	4D
		Naphthalene	ND	5.7	88	UJ	4D
		o-Xylene	ND	9.8	36	UJ	4D
		Propylbenzene	ND	2.3	41	UJ	4D
		Propylene	ND	11	58	UJ	4D
		Styrene	ND	4.2	36	UJ	4D
		tert-Amyl methyl ether	ND	20	140	UJ	4D
		tert-Butyl alcohol	ND	9.3	100	UJ	4D
		Tetrachloroethene	110	10	57	J-	4D
		Tetrahydrofuran	ND	5.4	25	UJ	4D
		Toluene	ND	7.6	32	UJ	4D
		TPH - Gasoline	ND	3,400	3,400	UJ	4D
		trans-1,2-Dichloroethene	ND	14	33	UJ	4D
		trans-1,3-Dichloropropene	ND	5.2	38	UJ	4D
		Trichloroethene	ND	5.7	45	UJ	4D
		Vinyl Acetate	ND	23	120	UJ	4D
		Vinyl Bromide	ND	12	150	UJ	4D
		Vinyl Chloride	ND	8.5	21	UJ	4D
SG-VW29A-03	08/17/2021 09:04	Acrolein	ND	1.5	9.8	UJ	5F
	00/11/2021 00101	Iodomethane	ND	0.81	62	UJ	5A
SG-VW29B-02	07/15/2021 13:05	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
00 111202 02	0171072021 10.00	Acrolein	ND	2.8	9.5	UJ	5F
SG-VW30A-03	07/15/2021 08:17	1,2-Dichloropropane	ND	2.4	7.1	UJ	5A
00 11100/100	01/10/2021 00:11	Acrolein	ND	4.2	14	UJ	5F
SG-VW30B-03	07/15/2021 09:01	1,1,1,2-Tetrachloroethane	ND ND	11	310	UJ	4D
- V VV 30D-03	01/13/2021 08.01	1,1,1-Trichloroethane	ND ND	7.4	61	UJ	4D 4D
		1,1,2,2-Tetrachloroethane	ND ND	6.0	77	UJ	4D 4D
		1,1,2-Trichloroethane	ND ND	8.3	61	UJ	4D 4D
		1,1-Dichloroethane	ND	5.9	45 44	UJ	4D
		1,1-Dichloroethene	ND	9.3	44	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (σ	continued)						
SG-VW30B-03	07/15/2021 09:01	1,1-Difluoroethane	9,600	23	120	J-	4D
(continued)		1,2,3-Trichloropropane	ND	20	270	UJ	4D
		1,2,4-Trichlorobenzene	ND	37	330	UJ	4D
		1,2,4-Trimethylbenzene	ND	20	55	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	42	430	UJ	4D
		1,2-Dibromoethane (EDB)	ND	7.2	86	UJ	4D
		1,2-Dichlorobenzene	ND	5.8	67	UJ	4D
		1,2-Dichloroethane	ND	9.1	45	UJ	4D
		1,2-Dichloropropane	ND	17	52	UJ	4D,5A
		1,3,5-Trimethylbenzene	ND	8.5	55	UJ	4D
		1,3-Butadiene	ND	8.2	25	UJ	4D
		1,3-Dichlorobenzene	ND	8.6	67	UJ	4D
		1,4-Dichlorobenzene	ND	4.4	67	UJ	4D
		1,4-Dioxane	ND	8.0	160	UJ	4D
		2,2,4-Trimethylpentane	ND	4.0	52	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	23	130	UJ	4D
		2-Hexanone	ND	16	180	UJ	4D
		2-Propanol	ND	7.4	110	UJ	4D
		3-Chloropropene	ND	14	140	UJ	4D
		4-Ethyltoluene	ND	14	55	UJ	4D
		4-Methyl-2-pentanone	ND	6.9	46	UJ	4D
		Acetone	ND	19	270	UJ	4D
		Acrolein	ND	31	100	UJ	4D,5F
		Acrylonitrile	ND	9.2	97	UJ	4D
		alpha-Chlorotoluene	ND	4.7	58	UJ	4D
		Benzene	ND	2.7	36	UJ	4D
		Bromodichloromethane	ND	14	75	UJ	4D
		Bromoform	ND	10	120	UJ	4D
		Bromomethane	ND	20	430	UJ	4D
		Carbon Disulfide	ND	33	140	UJ	4D
		Carbon Tetrachloride	ND	11	70	UJ	4D
		Chlorobenzene	ND	4.5	52	UJ	4D
		Chloroethane	ND	24	120	UJ	4D
		Chloroform	540	6.5	55	J-	4D
		Chloromethane	ND	24	230	UJ	4D
		cis-1,2-Dichloroethene	ND	8.0	44	UJ	4D
		cis-1,3-Dichloropropene	ND	7.4	51	UJ	4D
		Cumene	ND	7.0	55	UJ	4D
		Cyclohexane	ND	8.3	38	UJ	4D
		Dibromochloromethane	ND	13	95	UJ	4D
		Dibromomethane	ND	15	320	UJ	4D
		Ethanol	ND	23	210	UJ	4D
		Ethyl Acetate	ND	46	160	UJ	4D
		Ethyl Benzene	ND	8.1	49	UJ	4D
		Ethyl- <i>tert</i> -butyl ether	ND	14	190	UJ	4D
		Freon 11	ND	7.2	63	UJ	4D
		Freon 12	ND	10	55	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW30B-03	07/15/2021 09:01	Freon 113	ND	14	86	UJ	4D
(continued)		Freon 114	ND	11	78	UJ	4D
		Freon 134a	ND	25	190	UJ	4D
		Heptane	ND	8.2	46	UJ	4D
		Hexachlorobutadiene	ND	53	480	UJ	4D
		Hexachloroethane	ND	430	430	UJ	4D
		Hexane	ND	7.3	39	UJ	4D
		Iodomethane	ND	36	650	UJ	4D
		Isopropyl ether	ND	12	190	UJ	4D
		m,p-Xylene	ND	26	49	UJ	4D
		Methyl tert-butyl ether	ND	9.9	160	UJ	4D
		Methylene Chloride	ND	22	390	UJ	4D
		Naphthalene	ND	7.6	120	UJ	4D
		o-Xylene	ND	13	49	UJ	4D
		Propylbenzene	ND	3.1	55	UJ	4D
		Propylene	ND	14	77	UJ	4D
		Styrene	ND	5.6	48	UJ	4D
		tert-Amyl methyl ether	ND	27	190	UJ	4D
		<i>tert</i> -Butyl alcohol	ND	12	140	UJ	4D
		Tetrachloroethene	240	13	76	J-	4D
		Tetrahydrofuran	ND	7.1	33	UJ	4D
		Toluene	ND	10	42	UJ	4D
		TPH - Gasoline	ND	4,600	4,600	UJ	4D
		trans-1,2-Dichloroethene	ND	18	44	UJ	4D
		trans-1,3-Dichloropropene	ND	7.0	51	UJ	4D
		Trichloroethene	ND	7.6	60	UJ	4D
		Vinyl Acetate	ND	31	160	UJ	4D
		Vinyl Bromide	ND	16	200	UJ	4D
		Vinyl Chloride	ND	11	29	UJ	4D
SG-VW31A-02	07/09/2021 13:34	1,2-Dichloropropane	ND	1.2	5.1	UJ	5A
		Acrolein	ND	1.5	10	UJ	5F
SG-VW31B-03	07/09/2021 14:06	1,2-Dichloropropane	ND	1.2	5.2	UJ	5A
		Acrolein	ND	1.5	10	UJ	5F
SG-VW32A-03	07/12/2021 11:26	1,2-Dichloropropane	ND	2.2	6.6	UJ	5A
		Acrolein	ND	4.0	13	UJ	5F
SG-VW32B-02	07/12/2021 10:31	1,1,1,2-Tetrachloroethane	ND	1.1	30	UJ	4D
		1,1,1-Trichloroethane	ND	0.72	5.9	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	0.58	7.4	UJ	4D
		1,1,2-Trichloroethane	ND	0.81	5.9	UJ	4D
		1,1-Dichloroethane	ND	0.57	4.4	UJ	4D
		1,1-Dichloroethene	ND	0.90	4.3	UJ	4D
		1,1-Difluoroethane	140	2.2	12	J-	4D
		1,2,3-Trichloropropane	ND	2.0	26	UJ	4D
		1,2,4-Trichlorobenzene	ND	3.6	32	UJ	4D
		1,2,4-Trimethylbenzene	66	2.0	5.3	J-	4D
		1,2-Dibromo-3-chloropropane	ND	4.0	42	UJ	4D
		1,2-Dibromoethane (EDB)	ND	0.70	8.3	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (continued)						
SG-VW32B-02	07/12/2021 10:31	1,2-Dichlorobenzene	ND	0.56	6.5	UJ	4D
(continued)		1,2-Dichloroethane	ND	0.88	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.7	5.0	UJ	4D,5A
		1,3,5-Trimethylbenzene	29	0.83	5.3	J-	4D
		1,3-Butadiene	ND	0.79	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.83	6.5	UJ	4D
		1,4-Dichlorobenzene	ND	0.42	6.5	UJ	4D
		1,4-Dioxane	ND	0.77	16	UJ	4D
		2,2,4-Trimethylpentane	20	0.39	5.1	J-	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.2	13	UJ	4D
		2-Hexanone	ND	1.5	18	UJ	4D
		2-Propanol	18	0.72	11	J-	4D
		3-Chloropropene	ND	1.4	14	UJ	4D
		4-Ethyltoluene	80	1.4	5.3	J-	4D
		4-Methyl-2-pentanone	ND	0.67	4.4	UJ	4D
		Acetone	50	1.8	26	J-	4D
		Acrolein	ND	3.0	10	UJ	4D,5F
		Acrylonitrile	ND	0.89	9.4	UJ	4D
		alpha-Chlorotoluene	ND	0.45	5.6	UJ	4D
		Benzene	22	0.26	3.5	J-	4D
		Bromodichloromethane	ND	1.4	7.3	UJ	4D
		Bromoform	ND	0.97	11	UJ	4D
		Bromomethane	ND	1.9	42	UJ	4D
		Carbon Disulfide	ND	3.2	14	UJ	4D
		Carbon Tetrachloride	ND	1.1	6.8	UJ	4D
		Chlorobenzene	ND	0.44	5.0	UJ	4D
		Chloroethane	ND	2.3	11	UJ	4D
		Chloroform	ND	0.63	5.3	UJ	4D
		Chloromethane	ND	2.4	22	UJ	4D
		cis-1,2-Dichloroethene	ND	0.78	4.3	UJ	4D
		cis-1,3-Dichloropropene	ND	0.72	4.9	UJ	4D
		Cumene	ND	0.68	5.3	UJ	4D
		Cyclohexane	7.7	0.80	3.7	J-	4D
		Dibromochloromethane	ND	1.3	9.2	UJ	4D
		Dibromomethane	ND	1.5	31	UJ	4D
		Ethanol	ND	2.2	20	UJ	4D
		Ethyl Acetate	ND	4.5	16	UJ	4D
		Ethyl Benzene	65	0.79	4.7	J-	4D
		Ethyl-tert-butyl ether	ND	1.4	18	UJ	4D
		Freon 11	ND	0.70	6.1	UJ	4D
		Freon 12	ND	0.97	5.4	UJ	4D
		Freon 113	ND	1.3	8.3	UJ	4D
		Freon 114	ND	1.0	7.6	UJ	4D
		Freon 134a	ND	2.4	18	UJ	4D
		Heptane	16	0.79	4.4	J-	4D
		Hexachlorobutadiene	ND	5.1	46	UJ	4D
		Hexachloroethane	ND	42	42	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (c	continued)						
SG-VW32B-02	07/12/2021 10:31	Hexane	19	0.71	3.8	J-	4D
(continued)		Iodomethane	ND	3.4	63	UJ	4D
		Isopropyl ether	ND	1.2	18	UJ	4D
		m,p-Xylene	200	2.6	4.7	J-	4D
		Methyl tert-butyl ether	ND	0.96	16	UJ	4D
		Methylene Chloride	ND	2.1	38	UJ	4D
		Naphthalene	ND	0.74	11	UJ	4D
		o-Xylene	64	1.2	4.7	J-	4D
		Propylbenzene	17	0.30	5.3	J-	4D
		Propylene	ND	1.4	7.5	UJ	4D
		Styrene	ND	0.54	4.6	UJ	4D
		tert-Amyl methyl ether	ND	2.6	18	UJ	4D
		tert-Butyl alcohol	ND	1.2	13	UJ	4D
		Tetrachloroethene	60	1.3	7.4	J-	4D
		Tetrahydrofuran	ND	0.69	3.2	UJ	4D
		Toluene	51	0.99	4.1	J-	4D
		TPH - Gasoline	4,500	440	440	J-	4D
		trans-1,2-Dichloroethene	ND	1.8	4.3	UJ	4D
		trans-1,3-Dichloropropene	ND	0.68	4.9	UJ	4D
		Trichloroethene	ND	0.73	5.8	UJ	4D
		Vinyl Acetate	ND	3.0	15	UJ	4D
		Vinyl Bromide	ND	1.5	19	UJ	4D
		Vinyl Chloride	ND	1.1	2.8	UJ	4D
SG-VW33A-02	07/14/2021 12:18	1,2-Dichloropropane	ND	2.0	5.9	UJ	5A
		Acrolein	ND	3.5	12	UJ	5F
		Ethanol	ND	2.6	24	UJ	2A-
		Naphthalene	ND	0.87	13	UJ	5B-
SG-VW33B-02	07/14/2021 12:41	1,2-Dichloropropane	ND	1.9	5.8	UJ	5A
		Acrolein	ND	3.4	11	UJ	5F
		Ethanol	ND	2.6	24	UJ	2A-
		Naphthalene	ND	0.85	13	UJ	5B-
SG-VW34A-02	07/14/2021 13:30	1,2-Dichloropropane	ND	1.8	5.2	UJ	5A
		Acrolein	ND	3.1	10	UJ	5F
		Ethanol	ND	2.3	21	UJ	2A-
		Naphthalene	ND	0.77	12	UJ	5B-
SG-VW34A-03	07/14/2021 13:30	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
00 1110 11 100	0171172021 10.00	Acrolein	ND	3.2	11	UJ	5F
SG-VW34B-02	07/14/2021 14:11	1,2-Dichloropropane	ND	1.9	5.5	UJ	5A
00 1110 12 02	017117202111111	Acrolein	ND	3.3	11	UJ	5F
SG-VW35A-03	08/16/2021 09:01	Acrolein	ND	1.4	9.6	UJ	5F
- V V V V V V V V V V V V V V V V V V V	33/10/2021 03.01	Hexane	4,300	0.68	3.7	J	6E
		lodomethane	4,300 ND	0.08	3. <i>1</i> 61	UJ	6E 5A
SG-VW35B-02	07/09/2021 12:17	1,1,1,2-Tetrachloroethane	ND ND	1.5	30	UJ	4D
3G-44433D-02	0110312021 12.11					UJ	
		1,1,1-Trichloroethane	ND	0.47	6.0		4D
		1,1,2,2-Tetrachloroethane	ND	0.71	7.6	UJ	4D
		1,1,2-Trichloroethane	ND	0.96	6.0	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (continued)						
SG-VW35B-02	07/09/2021 12:17	1,1-Dichloroethane	ND	0.93	4.4	UJ	4D
(continued)		1,1-Dichloroethene	ND	1.4	4.4	UJ	4D
		1,1-Difluoroethane	50	2.6	12	J-	4D
		1,2,3-Trichloropropane	ND	1.7	26	UJ	4D
		1,2,4-Trichlorobenzene	ND	2.9	33	UJ	4D
		1,2,4-Trimethylbenzene	ND	0.62	5.4	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	1.4	42	UJ	4D
		1,2-Dibromoethane (EDB)	ND	1.6	8.4	UJ	4D
		1,2-Dichlorobenzene	ND	0.75	6.6	UJ	4D
		1,2-Dichloroethane	ND	0.73	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.2	5.1	UJ	4D
		1,3,5-Trimethylbenzene	ND	1.1	5.4	UJ	4D
		1,3-Butadiene	ND	0.70	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.76	6.6	UJ	4D
		1,4-Dichlorobenzene	ND	0.78	6.6	UJ	4D
		1,4-Dioxane	ND	2.3	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.60	5.1	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.0	13	UJ	4D
		2-Hexanone	ND	0.43	18	UJ	4D
		2-Propanol	15	0.81	11	J-	4D
		3-Chloropropene	ND	3.0	14	UJ	4D
		4-Ethyltoluene	ND	1.1	5.4	UJ	4D
		4-Methyl-2-pentanone	ND	1.1	4.5	UJ	4D
		Acetone	60	2.6	26	J-	4D
		Acrolein	ND	1.5	10	UJ	4D,5F
		Acrylonitrile	ND	0.58	9.5	UJ	4D
		alpha-Chlorotoluene	ND	0.51	5.7	UJ	4D
		Benzene	ND	0.66	3.5	UJ	4D
		Bromodichloromethane	ND	1.1	7.4	UJ	4D
		Bromoform	ND	1.2	11	UJ	4D
		Bromomethane	ND	1.8	43	UJ	4D
		Carbon Disulfide	ND	1.3	14	UJ	4D
		Carbon Tetrachloride	ND	1.8	6.9	UJ	4D
		Chlorobenzene	ND	0.46	5.1	UJ	4D
		Chloroethane	ND	3.0	12	UJ	4D
		Chloroform	23	0.46	5.4	J-	4D
		Chloromethane	ND	1.6	23	UJ	4D
		cis-1,2-Dichloroethene	ND	1.6	4.4	UJ	4D
		cis-1,3-Dichloropropene	ND	0.96	5.0	UJ	4D
		Cumene	ND	0.68	5.4	UJ	4D
		Cyclohexane	ND	0.62	3.8	UJ	4D
		Dibromochloromethane	ND	1.6	9.4	UJ	4D
		Dibromomethane	ND	1.2	31	UJ	4D
		Ethanol	24	2.6	21	J-	4D
		Ethyl Acetate	ND	0.93	16	UJ	4D
		Ethyl Benzene	ND	1.2	4.8	UJ	4D
		Ethyl- <i>tert</i> -butyl ether	ND	0.97	18	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW35B-02	07/09/2021 12:17	Freon 11	ND	1.3	6.2	UJ	4D
(continued)		Freon 12	ND	0.86	5.4	UJ	4D
		Freon 113	ND	1.3	8.4	UJ	4D
		Freon 114	ND	1.4	7.7	UJ	4D
		Freon 134a	ND	2.3	18	UJ	4D
		Heptane	ND	1.1	4.5	UJ	4D
		Hexachlorobutadiene	ND	4.3	47	UJ	4D
		Hexachloroethane	ND	43	43	UJ	4D
		Hexane	ND	0.71	3.9	UJ	4D
		Iodomethane	ND	0.83	64	UJ	4D
		Isopropyl ether	ND	0.54	18	UJ	4D
		m,p-Xylene	ND	1.1	4.8	UJ	4D
		Methyl tert-butyl ether	ND	0.85	16	UJ	4D
		Methylene Chloride	ND	0.79	38	UJ	4D
		Naphthalene	ND	4.4	12	UJ	4D
		o-Xylene	ND	1.2	4.8	UJ	4D
		Propylbenzene	ND	0.90	5.4	UJ	4D
		Propylene	ND	0.56	7.6	UJ	4D
		Styrene	ND	0.61	4.7	UJ	4D
		tert-Amyl methyl ether	ND	1.9	18	UJ	4D
		tert-Butyl alcohol	34	0.92	13	J-	4D
		Tetrachloroethene	190	1.2	7.5	J-	4D
		Tetrahydrofuran	ND	0.66	3.2	UJ	4D
		Toluene	ND	0.43	4.1	UJ	4D
		TPH - Gasoline	ND	450	450	UJ	4D
		trans-1,2-Dichloroethene	ND	1.1	4.4	UJ	4D
		trans-1,3-Dichloropropene	ND	0.87	5.0	UJ	4D
		Trichloroethene	ND	0.85	5.9	UJ	4D
		Vinyl Acetate	ND	4.2	15	UJ	4D
		Vinyl Bromide	ND	1.3	19	UJ	4D
		Vinyl Chloride	ND	0.71	2.8	UJ	4D
SG-VW36A-02	07/12/2021 13:03	1,2-Dichloropropane	ND	1.8	5.3	UJ	5A
		Acrolein	ND	3.1	10	UJ	5F
SG-VW36B-02	07/12/2021 12:18	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
SG-VW36B-03	07/12/2021 12:18	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
SG-VW37A-02	07/13/2021 09:12	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.8	9.4	UJ	5F
SG-VW37B-03	07/13/2021 08:26	1,2-Dichloropropane	ND	1.6	4.7	UJ	5A
		Acrolein	ND	2.8	9.3	UJ	5F
SG-VW37B-04	07/13/2021 08:26	1,2-Dichloropropane	ND	1.6	4.7	UJ	5A
		Acrolein	ND	2.8	9.4	UJ	5F
SG-VW38A-02	07/14/2021 10:24	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
		Ethanol	ND	2.4	22	UJ	2A-
		Naphthalene	ND	0.80	12	UJ	5B-

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (c	continued)						
SG-VW38A-03	07/14/2021 10:24	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
		Ethanol	ND	2.4	22	UJ	2A-
		Naphthalene	ND	0.79	12	UJ	5B-
SG-VW38B-03	07/14/2021 09:42	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.9	9.6	UJ	5F
		Ethanol	ND	2.1	20	UJ	2A-
		Naphthalene	ND	0.71	11	UJ	5B-
SG-VW39A-02	07/14/2021 09:16	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.8	9.4	UJ	5F
		Ethanol	ND	2.1	19	UJ	2A-
		Naphthalene	ND	0.70	11	UJ	5B-
SG-VW39B-02	07/14/2021 08:41	1,2-Dichloropropane	ND	1.8	5.2	UJ	5A
		Acrolein	ND	3.1	10	UJ	5F
		Ethanol	ND	2.3	21	UJ	2A-
		Naphthalene	ND	0.78	12	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	5B-
SG-VW40A-02	07/13/2021 07:46	1,2-Dichloropropane	ND	1.6	4.6	.6 UJ .2 UJ .8 UJ	5A
		Acrolein	ND	2.8	9.2	UJ	5F
SG-VW40B-02	07/13/2021 07:05	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.9	9.6	UJ	5F
SG-VW41A-03	07/13/2021 10:30	1,2-Dichloropropane	ND	1.6	4.7	UJ	5A
		Acrolein	ND	2.8	9.3	UJ	5F
SG-VW41B-02	07/13/2021 09:45	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.9	9.5	UJ	5F
SG-VW42A-03	07/13/2021 11:56	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
		Acrolein	ND	2.9	9.8	UJ	5F
SG-VW42A-04	07/13/2021 11:56	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
		Acrolein	ND	2.9	9.7	UJ	5F
SG-VW42B-02	07/13/2021 11:03	1,2-Dichloropropane	ND	1.7	5.0	UJ	5A
		Acrolein	ND	3.0	10	UJ	5F
SG-VW43A-02	07/08/2021 12:10	Acrolein	ND	1.7	11	UJ	5F
SG-VW43B-02	07/08/2021 12:45	Acrolein	ND	1.8	12	UJ	5F
SG-VW44A-03	08/16/2021 09:53	Acrolein	ND	1.5	9.8	UJ	5F
		Iodomethane	ND	0.81	62	UJ	5A
SG-VW44B-02	07/08/2021 17:46	1,2-Dichloropropane	ND	1.8	5.3	UJ	5A
		Acrolein	ND	3.2	10	UJ	5F
SG-VW45A-03	07/08/2021 13:58	Acrolein	ND	1.5	10	UJ	5F
SG-VW45B-02	07/08/2021 14:38	1,2-Dichloropropane	ND	1.8	5.3	UJ	5A
		Acrolein	ND	3.2	10	UJ	5F
SG-VW46A-02	07/08/2021 15:38	1,2-Dichloropropane	ND	1.7	5.1	UJ	5A
		Acrolein	ND	3.0	10	UJ	5F
SG-VW46B-02	07/08/2021 16:08	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
_ 5 102 02	1.,00,2021 10.00	Acrolein	ND	2.9	9.8	UJ	5F
SG-VW47A-02	07/08/2021 18:54	2-Propanol	27	1.7	11	J	3D
55 VVV F//\-02	51700/2021 10.0 1	1,2-Dichloropropane	ND	0.72	5.0	UJ	5A
		Acrolein	ND	3.0	10	UJ	5F
		7 (0) 010111	IND	0.0	10	00	3D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (σ	continued)						
SG-VW47A-03	07/08/2021 18:54	2-Propanol	ND	1.7	11	UJ	3D
		1,2-Dichloropropane	ND	0.72	5.0	UJ	5A
		Acrolein	ND	3.0	10	UJ	5F
		tert-Butyl alcohol	ND	1.2	13	UJ	3D
SG-VW47B-02	07/08/2021 19:27	1,1,1,2-Tetrachloroethane	ND	1.1	30	UJ	4D
		1,1,1-Trichloroethane	ND	0.72	5.9	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	0.58	7.5	UJ	4D
		1,1,2-Trichloroethane	ND	0.81	5.9		4D
		1,1-Dichloroethane	ND	0.58	4.4	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4D
		1,1-Dichloroethene	ND	0.90	4.3		4D
		1,1-Difluoroethane	150	2.2	12	J-	4D
		1,2,3-Trichloropropane	ND	2.0	26	UJ	4D
		1,2,4-Trichlorobenzene	ND	3.6	32		4D
		1,2,4-Trimethylbenzene	ND	2.0	5.4	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	4.0	42		4D
		1,2-Dibromoethane (EDB)	ND	0.70	8.4	UJ	4D
		1,2-Dichlorobenzene	ND	0.56	6.6	UJ	4D
		1,2-Dichloroethane	ND	0.89	4.4	UJ	4D
		1,2-Dichloropropane	ND	1.7	5.0	UJ	4D,5A
		1,3,5-Trimethylbenzene	ND	0.83	5.4	UJ	4D
		1,3-Butadiene	ND	0.80	2.4	UJ	4D
		1,3-Dichlorobenzene	ND	0.84	6.6	UJ	4D
		1,4-Dichlorobenzene	ND	0.42	6.6	UJ	4D
		1,4-Dioxane	ND	0.78	16	UJ	4D
		2,2,4-Trimethylpentane	ND	0.39	5.1	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	2.3	13	UJ	4D
		2-Hexanone	ND	1.5	18	UJ	4D
		2-Propanol	18	0.72	11	J-	4D
		3-Chloropropene	ND	1.4	14	UJ	4D
		4-Ethyltoluene	ND	1.4	5.4	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	4D
		4-Methyl-2-pentanone	ND	0.67	4.5		4D
		Acetone	29	1.9	26	J-	4D
		Acrolein	ND	3.0	10	UJ	4D,5F
		Acrylonitrile	ND	0.90	9.5	UJ	4D
		alpha-Chlorotoluene	ND	0.45	5.6	UJ	4D
		Benzene	ND	0.26	3.5	UJ	4D
		Bromodichloromethane	ND	1.4	7.3	UJ	4D
		Bromoform	ND	0.97	11	UJ	4D
		Bromomethane	ND	1.9	42	UJ	4D
		Carbon Disulfide	ND	3.2	14	UJ	4D
		Carbon Tetrachloride	ND	1.1	6.8	UJ	4D
		Chlorobenzene	340	0.44	5.0	J-	4D
		Chloroethane	ND	2.3	12	UJ	4D
		Chloroform	350	0.63	5.3	J-	4D
		Chloromethane	ND	2.4	22	UJ	4D
		cis-1,2-Dichloroethene	ND	0.78	4.3	UJ	4D
		cis-1,3-Dichloropropene	ND	0.72	4.9	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW47B-02	07/08/2021 19:27	Cumene	ND	0.68	5.4	UJ	4D
(continued)		Cyclohexane	ND	0.80	3.8	UJ	4D
		Dibromochloromethane	ND	1.3	9.3	UJ	4D
		Dibromomethane	ND	1.5	31	UJ	4D
		Ethanol	ND	2.2	20	UJ	4D
		Ethyl Acetate	ND	4.5	16	UJ	4D
		Ethyl Benzene	ND	0.79	4.7	UJ	4D
		Ethyl-tert-butyl ether	ND	1.4	18	UJ	4D
		Freon 11	ND	0.70	6.1	UJ	4D
		Freon 12	ND	0.97	5.4	UJ	4D
		Freon 113	ND	1.3	8.4	UJ	4D
		Freon 114	ND	1.0	7.6	UJ	4D
		Freon 134a	ND	2.4	18	UJ	4D
		Heptane	ND	0.80	4.5	UJ	4D
		Hexachlorobutadiene	ND	5.1	46	UJ	4D
		Hexachloroethane	ND	42	42	UJ	4D
		Hexane	ND	0.71	3.8	UJ	4D
		Iodomethane	ND	3.4	63	UJ	4D
		Isopropyl ether	ND	1.2	18	UJ	4D
		m,p-Xylene	ND	2.6	4.7	UJ	4D
		Methyl tert-butyl ether	ND	0.96	16	UJ	4D
		Methylene Chloride	ND	2.2	38	UJ	4D
		Naphthalene	ND	0.74	11	UJ	4D
		o-Xylene	ND	1.3	4.7	UJ	4D
		Propylbenzene	ND	0.30	5.4	UJ	4D
		Propylene	ND	1.4	7.5	UJ	4D
		Styrene	ND	0.54	4.6	UJ	4D
		tert-Amyl methyl ether	ND	2.6	18	UJ	4D
		tert-Butyl alcohol	ND	1.2	13	UJ	4D
		Tetrachloroethene	9.6	1.3	7.4	J-	4D
		Tetrahydrofuran	ND	0.70	3.2	UJ	4D
		Toluene	ND	0.99	4.1	UJ	4D
		TPH - Gasoline	ND	440	440	UJ	4D
		trans-1,2-Dichloroethene	ND	1.8	4.3	UJ	4D
		trans-1,3-Dichloropropene	ND	0.68	4.9	UJ	4D
		Trichloroethene	ND	0.74	5.8	UJ	4D
		Vinyl Acetate	ND	3.0	15	UJ	4D
		Vinyl Bromide	ND	1.5	19	UJ	4D
		Vinyl Chloride	ND	1.1	2.8	UJ	4D
SG-VW48A-03	07/09/2021 07:19	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.9	9.6	UJ	5F
SG-VW48B-02	07/09/2021 07:45	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
		Acrolein	ND	2.9	9.8	UJ	5F
SG-VW49A-03	07/09/2021 08:43	1,2-Dichloropropane	ND	1.1	4.7	UJ	5A
		Acrolein	ND	1.4	9.3	UJ	5F
SG-VW49B-02	07/09/2021 09:09	1,2-Dichloropropane	ND	1.2	5.1	UJ	5A
· · · · · · · · · · · · · · · ·		Acrolein	ND	1.5	10	UJ	5F

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (continued)						
SG-VW50A-03	07/09/2021 10:19	1,2-Dichloropropane	ND	1.2	4.9	UJ	5A
		Acrolein	ND	1.4	9.7	UJ	5F
SG-VW50B-02	07/09/2021 10:47	1,1,1,2-Tetrachloroethane	ND	1.5	29	UJ	4D
		1,1,1-Trichloroethane	ND	0.45	5.8	UJ	4D
		1,1,2,2-Tetrachloroethane	ND	0.68	7.3	UJ	4D
		1,1,2-Trichloroethane	ND	0.93	5.8	UJ	4D
		1,1-Dichloroethane	ND	0.89	4.3	UJ	4D
		1,1-Dichloroethene	ND	1.4	4.2	UJ	4D
		1,1-Difluoroethane	530	2.5	11	J-	4D
		1,2,3-Trichloropropane	ND	1.6	26	UJ	4D
		1,2,4-Trichlorobenzene	ND	2.8	31	UJ	4D
		1,2,4-Trimethylbenzene	ND	0.60	5.2	UJ	4D
		1,2-Dibromo-3-chloropropane	ND	1.3	41	UJ	4D
		1,2-Dibromoethane (EDB)	ND	1.6	8.1	UJ	4D
		1,2-Dichlorobenzene	ND	0.72	6.4	UJ	4D
		1,2-Dichloroethane	ND	0.70	4.3	UJ	4D
		1,2-Dichloropropane	ND	1.2	4.9	UJ	4D
		1,3,5-Trimethylbenzene	ND	1.1	5.2	UJ	4D
		1,3-Butadiene	ND	0.68	2.3	UJ	4D
		1,3-Dichlorobenzene	ND	0.73	6.4	UJ	4D
		1,4-Dichlorobenzene	ND	0.76	6.4	UJ	4D
		1,4-Dioxane	ND	2.2	15	UJ	4D
		2,2,4-Trimethylpentane	ND	0.58	5.0	UJ	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	1.9	12	UJ	4D
		2-Hexanone	ND	0.42	17	UJ	4D
		2-Propanol	ND	0.78	10	UJ	4D
		3-Chloropropene	ND	2.9	13	UJ	4D
		4-Ethyltoluene	ND	1.0	5.2	UJ	4D
		4-Methyl-2-pentanone	ND	1.0	4.3	UJ	4D
		Acetone	ND	2.5	25	UJ	4D
		Acrolein	ND	1.4	9.7	UJ	4D,5F
		Acrylonitrile	ND	0.56	9.2	UJ	4D
		alpha-Chlorotoluene	ND	0.49	5.5	UJ	4D
		Benzene	ND	0.64	3.4	UJ	4D
		Bromodichloromethane	ND	1.0	7.1	UJ	4D
		Bromoform	ND	1.2	11	UJ	4D
		Bromomethane	ND	1.8	41	UJ	4D
		Carbon Disulfide	ND	1.3	13	UJ	4D
		Carbon Tetrachloride	ND	1.8	6.7	UJ	4D
		Chlorobenzene	ND	0.44	4.9	UJ	4D
		Chloroethane	ND	2.9	11	UJ	4D
		Chloroform	18	0.44	5.2	J-	4D
		Chloromethane	ND	1.5	22	UJ	4D
		cis-1,2-Dichloroethene	ND	1.5	4.2	UJ	4D
		cis-1,3-Dichloropropene	ND	0.93	4.8	UJ	4D
		Cumene	ND	0.66	5.2	UJ	4D
		Cyclohexane	ND	0.60	3.6	UJ	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reasor Code
TO-15 (μg/m³) (α	continued)						
SG-VW50B-02	07/09/2021 10:47	Dibromochloromethane	ND	1.5	9.0	UJ	4D
(continued)		Dibromomethane	ND	1.1	30	UJ	4D
		Ethanol	ND	2.5	20	UJ	4D
		Ethyl Acetate	ND	0.89	15	UJ	4D
		Ethyl Benzene	ND	1.2	4.6	UJ	4D
		Ethyl-tert-butyl ether	ND	0.93	18	UJ	4D
		Freon 11	ND	1.3	6.0	UJ	4D
		Freon 12	ND	0.83	5.2	UJ	4D
		Freon 113	ND	1.3	8.1	UJ	4D
		Freon 114	ND	1.3	7.4	UJ	4D
		Freon 134a	ND	2.2	18	UJ	4D
		Heptane	ND	1.0	4.3	UJ	4D
		Hexachlorobutadiene	ND	4.1	45	UJ	4D
		Hexachloroethane	ND	41	41	UJ	4D
		Hexane	ND	0.68	3.7	UJ	4D
		lodomethane	ND	0.80	62	UJ	4D
		Isopropyl ether	ND	0.52	18	UJ	4D
		m,p-Xylene	ND	1.1	4.6	UJ	4D
		Methyl tert-butyl ether	ND	0.82	15	UJ	4D
		Methylene Chloride	ND	0.76	37	UJ	4D
		Naphthalene	ND	4.3	11	UJ	4D
		o-Xylene	ND	1.1	4.6	UJ	4D
		Propylbenzene	ND	0.86	5.2	UJ	4D
		Propylene	ND	0.54	7.3	UJ	4D
		Styrene	ND	0.59	4.5	UJ	4D
		tert-Amyl methyl ether	ND	1.8	18	UJ	4D
		tert-Butyl alcohol	ND	0.89	13	UJ	4D
		Tetrachloroethene	240	1.2	7.2	J-	4D
		Tetrahydrofuran	ND	0.63	3.1	UJ	4D
		Toluene	ND	0.41	4.0	UJ	4D
		TPH - Gasoline	ND	430	430	UJ	4D
		trans-1,2-Dichloroethene	ND	1.1	4.2	UJ	4D
		trans-1,3-Dichloropropene	ND	0.84	4.8	UJ	4D
		Trichloroethene	ND	0.82	5.7	UJ	4D
		Vinyl Acetate	ND	4.0	15	UJ	4D
		Vinyl Bromide	ND	1.3	18	UJ	4D
		Vinyl Chloride	ND	0.68	2.7	UJ	4D
SG-VW51A-02	07/12/2021 14:28	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
SG-VW51B-02	07/12/2021 13:42	1,2-Dichloropropane	ND	1.7	5.0	UJ	5A
		Acrolein	ND	3.0	10	UJ	5F
SG-VW52A-02	07/13/2021 09:04	Acrolein	ND	1.5	10	UJ	5F
SG-VW52B-02	07/13/2021 09:34	Acrolein	ND	1.4	9.4	UJ	5F
SG-VW53A-03	07/13/2021 10:53	Acrolein	ND	1.5	10	UJ	5F
SG-VW53B-02	07/13/2021 11:30	1,1,1,2-Tetrachloroethane	ND	29	570	R	4D
-		1,1,1-Trichloroethane	ND	8.9	110	R	4D
		1,1,2,2-Tetrachloroethane	ND	13	140	R	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW53B-02	07/13/2021 11:30	1,1,2-Trichloroethane	ND	18	110	R	4D
(continued)		1,1-Dichloroethane	ND	18	85	R	4D
		1,1-Dichloroethene	ND	27	83	R	4D
		1,1-Difluoroethane	21,000	50	220	J-	4D
		1,2,3-Trichloropropane	ND	32	500	R	4D
		1,2,4-Trichlorobenzene	ND	55	620	R	4D
		1,2,4-Trimethylbenzene	ND	12	100	R	4D
		1,2-Dibromo-3-chloropropane	ND	26	810	R	4D
		1,2-Dibromoethane (EDB)	ND	31	160	R	4D
		1,2-Dichlorobenzene	ND	14	120	R	4D
		1,2-Dichloroethane	ND	14	84	R	4D
		1,2-Dichloropropane	ND	23	96	R	4D
		1,3,5-Trimethylbenzene	ND	21	100	R	4D
		1,3-Butadiene	ND	13	46	R	4D
		1,3-Dichlorobenzene	ND	14	120	R	4D
		1,4-Dichlorobenzene	ND	15	120	R	4D
		1,4-Dioxane	ND	44	300	R	4D
		2,2,4-Trimethylpentane	ND	11	98	R	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	37	250	R	4D
		2-Hexanone	ND	8.2	340	R	4D
		2-Propanol	ND	15	200	R	4D
		3-Chloropropene	ND	57	260	R	4D
		4-Ethyltoluene	ND	21	100	R	4D
		4-Methyl-2-pentanone	ND	20	86	R	4D
		Acetone	ND	49	500	R	4D
		Acrolein	ND	29	190	R	4D,5F
		Acrylonitrile	ND	11	180	R	4D
		alpha-Chlorotoluene	ND	9.7	110	R	4D
		Benzene	ND	13	67	R	4D
		Bromodichloromethane	ND	21	140	R	4D
		Bromoform	ND	23	220	R	4D
		Bromomethane	ND	35	810	R	4D
		Carbon Disulfide	ND	25	260	R	4D
		Carbon Tetrachloride	ND	35	130	R	4D
		Chlorobenzene	ND	8.7	96	R	4D
		Chloroethane	ND	57	220	R	4D
		Chloroform	ND	8.7	100	R	4D
		Chloromethane	ND	30	430	R	4D
		cis-1,2-Dichloroethene	ND	30	83	R	4D
		cis-1,3-Dichloropropene	ND	18	95	R	4D
		Cumene	ND	13	100	R	4D
		Cyclohexane	ND	12	72	R	4D
		Dibromochloromethane	ND	30	180	R	4D
		Dibromomethane	ND	23	590	R	4D
		Ethanol	ND	49	390	R	4D
		Ethyl Acetate	ND	18	300	R	4D
		Ethyl Benzene	ND	24	91	R	4D

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW53B-02	07/13/2021 11:30	Ethyl- <i>tert</i> -butyl ether	ND	18	350	R	4D
(continued)		Freon 11	ND	25	120	R	4D
		Freon 12	ND	16	100	R	4D
		Freon 113	ND	26	160	R	4D
		Freon 114	ND	26	150	R	4D
		Freon 134a	ND	43	350	R	4D
		Heptane	ND	20	86	R	4D
		Hexachlorobutadiene	ND	82	890	R	4D
		Hexachloroethane	ND	810	810	R	4D
		Hexane	ND	13	74	R	4D
		Iodomethane	ND	16	1,200	R	4D
		Isopropyl ether	ND	10	350	R	4D
		m,p-Xylene	ND	21	91	R	4D
		Methyl <i>tert</i> -butyl ether	ND	16	300	R	4D
		Methylene Chloride	ND	15	730	R	4D
		Naphthalene	ND	84	220	R	4D
		o-Xylene	ND	23	91	R	4D
		Propylbenzene	ND	17	100	R	4D
		Propylene	ND	11	140	R	4D
		Styrene	ND	12	89	R	4D
		tert-Amyl methyl ether	ND	37	350	R	4D
		tert-Butyl alcohol	ND	18	250	R	4D
		Tetrachloroethene	ND	23	140	R	4D
		Tetrahydrofuran	ND	12	62	R	4D
		Toluene	ND	8.1	79	R	4D
		TPH - Gasoline	ND	8,500	8,500	R	4D
		<i>trans</i> -1,2-Dichloroethene	ND	21	83	R	4D
		<i>trans</i> -1,3-Dichloropropene	ND	16	95	R	4D 4D
		Trichloroethene	ND	16	110	R	4D 4D
		Vinyl Acetate	ND	80	290	R	4D 4D
		Vinyl Bromide	ND	25	360	R	4D 4D
		•		13		R	4D 4D
CC \ /\//E4D 00	07/44/2024 00:50	Vinyl Chloride	ND	1.7	53		
SG-VW54B-02	07/14/2021 08:58	1,2-Dichloropropane	ND		5.2	UJ	5A
20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00/47/0004 00:04	Acrolein	ND	3.1	10	UJ	5F
SG-VW55A-03	08/17/2021 06:34	Acrolein	ND	1.4	9.3	UJ	5F
	0=11110001111	lodomethane	ND	0.76	59	UJ	5A
SG-VW55B-02	07/14/2021 14:40	1,2-Dichloropropane	ND	1.7	4.9	UJ	5A
		Acrolein	ND	3.0	9.8	UJ	5F
SG-VW56A-02	07/14/2021 08:13	1,2-Dichloropropane	ND	1.6	4.9	UJ	5A
		Acrolein	ND	2.9	9.7	UJ	5F
		Ethanol	ND	2.2	20	UJ	2A-
		Naphthalene	ND	0.72	11	UJ	5B-
SG-VW56B-02	07/14/2021 07:42	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.9	9.6	UJ	5F
		Ethanol	ND	2.1	20	UJ	2A-
		Naphthalene	11	0.72	11	J-	5B-

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m ³) (σ	continued)						
SG-VW57A-02	07/14/2021 07:07	1,2-Dichloropropane	ND	1.6	4.8	UJ	5A
		Acrolein	ND	2.8	9.5	UJ	5F
		Ethanol	ND	2.1	20	UJ	2A-
		Naphthalene	ND	0.71	11	UJ	5B-
SG-VW57B-04	07/13/2021 12:52	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
SG-VW57B-05	07/13/2021 12:52	Acrolein	ND	1.6	10	UJ	5F
SG-VW58A-02	08/16/2021 11:13	Acrolein	ND	1.5	10	UJ	5F
		lodomethane	ND	0.83	64	UJ	5A
SG-VW58B-02	08/16/2021 11:38	Acrolein	ND	1.4	9.4	UJ	5F
		lodomethane	ND	0.78	60	UJ	5A
SG-VW59A-02	08/17/2021 10:16	Acrolein	ND	1.4	9.3	UJ	5F
		Iodomethane	ND	0.76	59	UJ	5A
SG-VW59B-02	08/17/2021 10:43	Acrolein	ND	1.4	9.6	UJ	5F
		lodomethane	ND	0.79	61	UJ	5A
SG-VW60A-02	08/16/2021 12:53	Acrolein	ND	1.4	9.3	UJ	5F
		lodomethane	ND	0.76	59	UJ	5A
SG-VW60B-02	08/16/2021 12:08	Acrolein	ND	1.4	9.6	UJ	5F
		lodomethane	ND	0.79	61	UJ	5A
SG-VW61A-02	08/16/2021 13:26	Acrolein	ND	1.5	10	UJ	5F
		lodomethane	ND	0.83	64	UJ	5A
SG-VW61B-01	07/15/2021 06:58	1,2-Dichloropropane	ND	1.4	4.1	UJ	5A
		Acrolein	ND	2.5	8.2	UJ	5F
SG-VW62-01	07/15/2021 07:34	1,1,1,2-Tetrachloroethane	ND	4,400	120,000	R	4D
		1,1,1-Trichloroethane	ND	2,800	24,000	R	4D
		1,1,2,2-Tetrachloroethane	ND	2,300	30,000	R	4D
		1,1,2-Trichloroethane	ND	3,200	24,000	R	4D
		1,1-Dichloroethane	ND	2,300	17,000	R	4D
		1,1-Dichloroethene	ND	3,600	17,000	R	4D
		1,1-Difluoroethane	5,300,000	8,800	46,000	J-	4D,6E
		1,2,3-Trichloropropane	ND	7,900	100,000	R	4D
		1,2,4-Trichlorobenzene	ND		130,000	R	4D
		1,2,4-Trimethylbenzene	ND		21,000	R	4D
		1,2-Dibromo-3-chloropropane	ND		170,000	R	4D
		1,2-Dibromoethane (EDB)	ND	2,800	33,000	R	4D
		1,2-Dichlorobenzene	ND	2,200	26,000	R	4D
		1,2-Dichloroethane	ND	3,500	17,000	R	4D
		1,2-Dichloropropane	ND	6,700	20,000	R	4D,5A
		1,3,5-Trimethylbenzene	ND	3,300	21,000	R	4D
		1,3-Butadiene	ND	3,100	9,500	R	4D
		1,3-Dichlorobenzene	ND	3,300	26,000	R	4D
		1,4-Dichlorobenzene	ND	1,700	26,000	R	4D
		1,4-Dioxane	ND	3,100	62,000	R	4D
		2,2,4-Trimethylpentane	ND	1,600	20,000	R	4D
		2-Butanone (Methyl Ethyl Ketone)	ND	9,000	51,000	R	4D
		2-Hexanone	ND	6,000	71,000	R	4D

AECOM 31

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (
SG-VW62-01	07/15/2021 07:34	2-Propanol	ND	2,800	42,000	R	4D
(continued)		3-Chloropropene	ND	5,500	54,000	R	4D
		4-Ethyltoluene	ND	5,400	21,000	R	4D
		4-Methyl-2-pentanone	ND	2,600	18,000	R	4D
		Acetone	ND	7,400	100,000	R	4D
		Acrolein	ND	12,000	40,000	R	4D,5F
		Acrylonitrile	ND	3,500	37,000	R	4D
		alpha-Chlorotoluene	ND	1,800	22,000	R	4D
		Benzene	ND	1,000	14,000	R	4D
		Bromodichloromethane	ND	5,500	29,000	R	4D
		Bromoform	ND	3,800	44,000	R	4D
		Bromomethane	ND	7,500	170,000	R	4D
		Carbon Disulfide	ND	12,000	54,000	R	4D
		Carbon Tetrachloride	ND	4,400	27,000	R	4D
		Chlorobenzene	ND	1,700	20,000	R	4D
		Chloroethane	ND	9,200	45,000	R	4D
		Chloroform	ND	2,500	21,000	R	4D
		Chloromethane	ND	9,400	89,000	R	4D
		cis-1,2-Dichloroethene	ND	3,100	17,000	R	4D
		cis-1,3-Dichloropropene	ND	2,800	20,000	R	4D
		Cumene	ND	2,700	21,000	R	4D
		Cyclohexane	ND	3,200	15,000	R	4D
		Dibromochloromethane	ND	5,100	37,000	R	4D
		Dibromomethane	ND	5,900	120,000	R	4D
		Ethanol	ND	8,800	81,000	R	4D
		Ethyl Acetate	ND	18,000	62,000	R	4D
		Ethyl Benzene	ND	3,100	19,000	R	4D
		Ethyl-tert-butyl ether	ND	5,400	72,000	R	4D
		Freon 11	ND	2,800	24,000	R	4D
		Freon 12	ND	3,800	21,000	R	4D
		Freon 113	ND	5,200	33,000	R	4D
		Freon 114	ND	4,200	30,000	R	4D
		Freon 134a	ND	9,700	72,000	R	4D
		Heptane	ND	3,200	18,000	R	4D
		Hexachlorobutadiene	ND	20,000	180,000	R	4D
		Hexachloroethane	ND	170,000	170,000	R	4D
		Hexane	ND	2,800	15,000	R	4D
		Iodomethane	ND	14,000	250,000	R	4D
		Isopropyl ether	ND	4,800	72,000	R	4D
		m,p-Xylene	ND	10,000	19,000	R	4D
		Methyl tert-butyl ether	ND	3,800	62,000	R	4D
		Methylene Chloride	ND	8,500	150,000	R	4D
		Naphthalene	ND	2,900	45,000	R	4D
		o-Xylene	ND	5,000	19,000	R	4D
		Propylbenzene	ND	1,200	21,000	R	4D
		Propylene	ND	5,600	30,000	R	4D
		Styrene	ND	2,100	18,000	R	4D

AECOM 32

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (α	continued)						
SG-VW62-01	07/15/2021 07:34	tert-Amyl methyl ether	ND	10,000	72,000	R	4D
(continued)		tert-Butyl alcohol	ND	4,800	52,000	R	4D
		Tetrachloroethene	ND	5,200	29,000	R	4D
		Tetrahydrofuran	ND	2,700	13,000	R	4D
		Toluene	ND	3,900	16,000	R	4D
		TPH - Gasoline	ND	1,800,000	1,800,000	R	4D
		trans-1,2-Dichloroethene	ND	7,100	17,000	R	4D
		trans-1,3-Dichloropropene	ND	2,700	20,000	R	4D
		Trichloroethene	ND	2,900	23,000	R	4D
		Vinyl Acetate	ND	12,000	61,000	R	4D
		Vinyl Bromide	ND	6,100	75,000	R	4D
		Vinyl Chloride	ND	4,300	11,000	R	4D
SG-VW63A-02	08/16/2021 14:42	Acrolein	ND	1.4	9.6	UJ	5F
00 11100/102	00/10/2021 11.12	lodomethane	ND	0.79	61	UJ	5A
SG-VW63B-02	08/16/2021 15:18	Acrolein	ND	1.4	9.6	UJ	5F
00 W00D 02	00/10/2021 10:10	Hexane	530	0.68	3.7	J	3D
		Iodomethane	ND	0.79	61	UJ	5A
		TPH – Gasoline	980	430	430	J	3D
SG-VW63B-03	08/16/2021 15:18	Acrolein	ND	1.4	9.6	UJ	5F
3G-77703D-03	00/10/2021 13.10	Hexane					3D
			200 ND	0.68	3.7	J	
		lodomethane	ND	0.79	61	UJ	5A
00104044	00/47/0004 00 00	TPH – Gasoline	450	430	430	J	3D
SG-VW64A-02	08/17/2021 09:38	2-Propanol	9.9	0.76	10	J 	6G
		Acrolein	ND	1.4	9.4	UJ	5F
		lodomethane	ND	0.78	60	UJ	5A
SG-VW64B-01	07/15/2021 11:41	1,2-Dichloropropane	ND	1.8	5.4	UJ	5A
		Acrolein	ND	3.2	11	UJ	5F
SG-VM65A-01	07/30/2021 09:36	Acrolein	ND	1.5	9.8	UJ	5F
		lodomethane	ND	0.81	62	UJ	5A
SG-VM65B-01	07/30/2021 10:06	Acrolein	ND	1.4	9.4	UJ	5F
		lodomethane	ND	0.77	59	UJ	5A
SG-VM66A-01	07/30/2021 11:14	Acrolein	ND	1.5	9.8	UJ	5F
		lodomethane	ND	0.80	62	UJ	5A
SG-VM66B-01	07/30/2021 12:06	Acrolein	ND	1.5	10	UJ	5F
		lodomethane	ND	0.84	64	UJ	5A
SG-VM66B-02	07/30/2021 12:06	Acrolein	ND	1.5	9.9	UJ	5F
		lodomethane	ND	0.82	63	UJ	5A
SSV-FSS01-02	08/17/2021 11:22	Acrolein	ND	1.4	9.4	UJ	5F
		Hexane	77	0.66	3.6	J	3D
		lodomethane	ND	0.78	60	UJ	5A
SSV-FSS01-03	08/17/2021 11:22	Acrolein	ND	1.4	9.4	UJ	5F
		Hexane	54	0.66	3.6	J	3D
		Iodomethane	ND	0.78	60	UJ	5A
SSV-FSS02-02	08/17/2021 11:40	Acrolein	ND	1.4	9.3	UJ	5F
007-1 0002-02	00/11/2021 11.40	lodomethane	ND ND		9.3 59	UJ	
001/ 00004 00	00/47/0004 40:00			0.76			5A
SSV-GSS01-02	08/17/2021 12:23	Acrolein	ND	1.4	9.4	UJ	5F
		Iodomethane	ND	0.78	60	UJ	5A

AECOM 33

TABLE 1. QUALIFIED RESULTS

Sample Name	Sample Date/Time	Analyte	Result	MDL	RL	EPA Flag	Reason Code
TO-15 (μg/m³) (co	ontinued)	•					
SSV-GSS02-02	08/17/2021 12:50	Acrolein	ND	1.5	9.8	UJ	5F
		lodomethane	ND	0.81	62	UJ	5A
SSV-HMBSS01-02	08/17/2021 13:22	Acrolein	ND	1.4	9.4	UJ	5F
		lodomethane	ND	0.78	60	UJ	5A
SSV-HSS01-01	07/15/2021 15:13	Acrolein	ND	1.4	9.3	UJ	5F
		lodomethane	ND	0.76	59	UJ	5A
		Propylene	6.8	0.51	7.0	J	6G
SSV-JSS01-02	08/17/2021 13:45	Acrolein	ND	1.4	9.6	UJ	5F
		lodomethane	ND	0.79	61	UJ	5A

Notes:

μg/m³ = micrograms per cubic meter <DL = less than the detection limit

EPA = United States Environmental Protection Agency

MDL = method detection limit
ND = not detected above the MDL

RL = reporting limit TO = toxic organics

TPH = total petroleum hydrocarbons

EPA Flags:

J = Estimated concentration

J- = Estimated concentration; potential low bias

R = Rejected result; the data should not be used for site evaluation

UJ = Estimated RL; analyte not detected; potential for false negative result at the RL

Reason Codes:

2A- = Low laboratory control sample recovery 2A+ = High laboratory control sample recovery

3D = Field duplicate imprecision 3E = Field replicate imprecision

4D = Leak check compound greater than ten times the lowest RL; potential leak

5A = Initial calibration did not meet method requirement

5B- = Low continuing calibration recovery

5F = Estimated concentration. Potential concerns for the measurement of acrolein using TO-15 (USEPA)

6E = Detected above the calibration range

6G = Reported below the RL

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 1 of 37)

	Location ID		VW14	Ī	VW15			ı	VW15		- 1		VW16A		Ī	VW16B			VW17A				VW17B	
	Location ID Sampling Date/Time		07/15/2021 15:58		07/14/2021 1	1.21		,	77/14/2021 1	11.34		,	VVV16A 07/15/2021 08:3	30	,	VW16B 07/12/2021 13:	11	1	08/16/2021 1	0 ∙31			VW17B 07/12/2021 1	
	Sample Depth (feet)	,	26		23.5	1.04		l '	23.5	11.04			5.5	00	'	14.5	11	1	5.5	0.01		'	14.5	ਜ.ਹ <i>ਹ</i>
	Sample Type		N	1	25.5 N				FD				0.5 N			N			N.				N	
	Field Sample ID		SG-VW14-02		SG-VW15-	02			SG-VW15-	-03			SG-VW16A-02	2		SG-VW16B-0	2		SG-VW17A	-03			SG-VW17B	-03
	Lab Sample ID		2107361-13A	Ī	2107284-0				2107284-1				2107361-06A			2107282-01 <i>A</i>			2108390-0				2107282-0	
	Status		Validated		Validated	1			Validated	d			Validated			Validated			Validated	1			Validated	1
		_		L	1	1				1 1	[1				_]		1	1
Analyte	2		QA Reason MDL RL		QA Reason	+ -			QA Reason	1 1			QA Reason N						ult QA Reason			Result	QA Reason	
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	1.5 29		-	1.2	32	ND		+-+	32	ND	-	1.4 29	ND			31 N		1.4	28	ND	UJ 4D	1.5 30
1,1,1-Trichloroethane	TO-15 μg/m ³	ND	0.46 5.8			0.78		ND			6.3	ND		0.45 5.7	ND			6.2 N		0.43	5.5	ND	UJ 4D	0.47 6.0
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND	0.69 7.3	-		0.63	8.1	ND		-	7.9	ND		0.68 7.2	ND			7.8 N	+	0.65	6.9	ND	UJ 4D	0.71 7.6
1,1,2-Trichloroethane	TO-15 μg/m ³	ND	0.94 5.8			0.88	6.4	ND			6.3	ND		0.92 5.7	ND			6.2 N		0.88	5.5	ND	UJ 4D	0.96 6.0
1,1-Dichloroethane 1,1-Dichloroethene	TO-15 μg/m ³	ND	0.90 4.3			0.62	4.8	ND		0.61	4.7	ND		0.89 4.2	ND			4.6 N	+	0.85	4.1	ND	UJ 4D UJ 4D	0.93 4.4 1.4 4.4
,		ND	1.4 4.2		<u> </u>	0.98	4.7	ND		1 1	4.6	ND		1.4 4.2	ND	-		4.5 N		1.3	4.0	ND		1 1
1,1-Difluoroethane 1,2,3-Trichloropropane	TO-15 μg/m ³ TO-15 μg/m ³	ND ND	2.5 12 1.6 26	+	-	2.4	13 28	ND ND		2.4	12 28	ND ND		2.5 11 1.6 25	ND ND	+	2.7 1.7	12 1 27 N		2.4 1.5	11 24	170 ND	J- 4D UJ 4D	2.6 12 1.7 26
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND	2.8 32			3.9	35	ND		3.8	34	ND		2.7 31	ND			34 N		2.6	30	ND	UJ 4D	2.9 33
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND	0.61 5.2	+	UJ 3D	2.1	5.8	50	J 3D	1 1	5.7	ND		0.60 5.2				5.6 7 .		0.57	5.0	ND	UJ 4D	0.62 5.4
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND	1.3 41	ND	00 00	4.4	46	ND	3 35		45	ND		1.3 40	ND			44 N		1.3	39	ND	UJ 4D	1.4 42
1.2-Dibromoethane (EDB)	TO-15 μg/m ³	ND	1.6 8.2			0.76		ND			8.9	ND		1.6 8.1	ND			8.7 N		1.5	7.8	ND	UJ 4D	1.6 8.4
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	0.72 6.4			0.61	7.1	ND			6.9	ND		0.71 6.3	ND		0.77			0.68	6.1	ND	UJ 4D	0.75 6.6
1,2-Dichloroethane	TO-15 μg/m ³	ND	0.71 4.3	-		0.96		ND			4.7	ND		0.70 4.2	ND			4.6 N		0.67	4.1	ND	UJ 4D	0.73 4.4
1,2-Dichloropropane	TO-15 μg/m ³	ND	1.2 4.9		UJ 5A	1.8	5.4	ND	UJ 5A	1 1	5.3	ND		1.2 4.8	ND			5.2 N		1.1	4.7	ND	UJ 4D	1.2 5.1
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND	1.1 5.3			0.90		9.7		1 1	5.7	ND		1.1 5.2	ND			5.6 N		1.0	5.0	ND	UJ 4D	1.1 5.4
1,3-Butadiene	TO-15 μg/m ³	ND	0.68 2.4			0.86		ND			2.6	ND	C	0.67 2.3	ND	(2.5 N)	0.64	2.2	ND	UJ 4D	0.70 2.4
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	0.74 6.4	ND		0.91	7.1	ND			6.9	ND	C	0.72 6.3	ND			6.8 N)	0.69	6.1	ND	UJ 4D	0.76 6.6
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	0.76 6.4	ND		0.46	7.1	ND		0.45	6.9	ND	C	0.75 6.3	ND		0.81	6.8 N)	0.72	6.1	ND	UJ 4D	0.78 6.6
1,4-Dioxane	TO-15 μg/m ³	ND	2.3 15	ND		0.84	17	ND		0.82	17	ND		2.2 15	ND		2.4	16 N		2.1	14	ND	UJ 4D	2.3 16
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	0.59 5.0	ND		0.43	5.5	ND		0.42	5.4	ND	C	0.58 4.9	ND	(0.62	5.3 N)	0.55	4.7	ND	UJ 4D	0.60 5.1
2-Butanone (Methyl Ethyl Ketone	e) TO-15 μg/m ³	ND	1.9 13	ND		2.4	14	ND		2.4	14	ND		1.9 12	ND		2.0	13 N)	1.8	12	ND	UJ 4D	2.0 13
2-Hexanone	TO-15 μg/m ³	ND	0.42 18	+		1.6	19	ND		1.6	19	ND		0.41 17	ND		0.45	18 N)	0.40	16	ND	UJ 4D	0.43 18
2-Propanol	TO-15 μg/m ³	ND	0.79 10	ND		0.78	12	12		0.76	11	ND		0.77 10	12	(0.84	11 1		0.74	9.9	ND	UJ 4D	0.81 11
3-Chloropropene	TO-15 μg/m ³	ND	2.9 13			1.5	15	ND		1.5	14	ND		2.9 13	ND		3.1	14 N		2.8	13	ND	UJ 4D	3.0 14
4-Ethyltoluene	TO-15 μg/m ³	ND	1.1 5.3		UJ 3D	1.5	5.8	17	J 3D	1.4	5.7	ND		1.0 5.2	ND			5.6 5.		1.0	5.0	ND	UJ 4D	1.1 5.4
4-Methyl-2-pentanone	TO-15 μg/m ³	ND	1.0 4.4	+		0.73	4.8	ND			4.7	ND		1.0 4.3	ND			4.6 5.		0.98	4.1	ND	UJ 4D	1.1 4.5
Acetone	TO-15 μg/m ³	ND	2.5 25	- 00		2.0	28	42		2.0	27	37		2.5 25	34		2.7	27 N		2.4	24	33	J- 4D	2.6 26
Acrolein	TO-15 μg/m ³	ND	UJ 5F 1.5 9.8		UJ 5F	3.2		ND	UJ 5F		10	ND		1.4 9.6				10 N		1.4	9.3		UJ 4D,5F	1.5 10
Acrylonitrile	TO-15 μg/m ³	ND	0.57 9.3		-	0.97		ND				ND		0.56 9.1			0.60			0.54	8.8		UJ 4D	0.58 9.5
alpha-Chlorotoluene	TO-15 μg/m ³	ND	0.50 5.5			0.49		ND		0.48		ND		0.49 5.4			0.53			0.47	5.2		UJ 4D	0.51 5.7
Benzene	TO-15 μg/m ³	ND	0.64 3.4			0.28		ND		0.28		ND		0.63 3.4	ND		0.68			0.61	3.2		UJ 4D	0.66 3.5
Bromodichloromethane Bromoform	TO-15 μg/m ³	ND		ND		1.5		ND		1 1	7.7	ND		1.0 7.0	ND			7.6 N		1.0	6.8		UJ 4D	1.1 7.4
Bromoform Bromomothana	TO-15 μg/m ³	ND	1.2 11	_		1.0		ND		1.0	12	ND		1.1 11	ND		1.2	12 N		1.1	10	ND	UJ 4D	1.2 11
Bromomethane Carbon Disulfide	TO-15 μg/m ³ TO-15 μg/m ³	ND	1.8 42		111.30	2.0	46	ND 46	1.20		45	ND		1.8 41	ND	-		44 N 14 N		1.7	39	ND	UJ 4D UJ 4D	1.8 43
Carbon Disulfide	TO-15 μg/m TO-15 μg/m ³	ND	1.3 13		UJ 3D	3.4	15 7.4	46 ND	J 3D	3.4	14	ND		1.3 13	ND		1.4			1.2	12	ND 0.1	J- 4D	1.3 14 1.8 6.9
Carbon Tetrachloride Chlorobenzene	TO-15 μg/m ³	ND ND	1.8 6.7 0.45 4.9			1.2		ND ND		1 1	7.3 5.3	ND ND		1.7 6.6 0.44 4.8			1.9 0.47	7.1 N 5.2 N		1.7 0.42	6.4 4.6	9.1 ND	UJ 4D	0.46 5.1
Chloroethane	TO-15 μg/m ³	ND	2.9 11			0.47 2.5		ND			12	ND			ND			5.2 N 12 N		2.7	4.6	ND	UJ 4D	3.0 12
Chloroform	TO-15 μg/m ³	8.1	0.45 5.2		 	0.68		ND		2.4 0.67	5.6	17		2.8 11 0.44 5.1				5.5 19		0.42	4.9	570	J- 4D	0.46 5.4
Chloromethane	TO-15 μg/m ³	ND	1.6 22	_		2.6		ND		1 1	24	ND		1.5 22				23 N		1.5	21	ND	UJ 4D	1.6 23
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND	1.5 4.2			0.84		ND			4.6	ND		1.5 4.2				4.5 N		1.4	4.0		UJ 4D	1.6 4.4
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	0.94 4.8		 	0.78		ND		0.63		ND		0.92 4.8			1.0					ND	UJ 4D	0.96 5.0
ora - 1,0-Dioriloroproperie	10-15 μg/111	אט	0.94 4.8	טאו		U./0	ა.4	טאו		0.70	J.Z	אט	·	J.84 4.8	טאו		1.0	J.Z IN	,	0.09	4.0	אט	UU 4D	0.30 5.0

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 2 of 37)

	Location ID		\(\0.14.4				\				\0\14				\/\/\/	٨			\/\//16D				\ /\ \ / \ 7 \ \		1	\ /\ /\	47D
	Location ID Sampling Date/Time		VW14 07/15/2021 15	5.58			VW15 07/14/2021 1	1.3/			VW15 07/14/2021	11.34			VW16. 07/15/2021				VW16B 07/12/2021 13	3.11			VW17A 08/16/2021				17B 21 14:39
	Sample Depth (feet)		26	5.00			23.5	1.54			23.5	11.04			5.5	50.50			14.5	0.11			5.5	10.01			1.5
	Sample Type		N				25.5 N				FD				0.0 N				N				0.5 N				r.5 N
	Field Sample ID		SG-VW14-0)2			SG-VW15-	02			SG-VW15	-03			SG-VW16	A-02			SG-VW16B-	-02			SG-VW17A	\-03			/17B-03
	Lab Sample ID		2107361-13	3A			2107284-09	9A			2107284-1	0A			2107361-	-06A			2107282-01	1A			2108390-0	3A		21072	82-03A
	Status		Validated				Validated	1			Validate	d			Validate	ed			Validated	1			Validate	d		Vali	lated
		,			,				ı		Ī				ı								Ī	i i		i	
Analyte			QA Reason				QA Reason				QA Reason	_	+		QA Reaso		-		QA Reason		-		QA Reason		Resul		ason MDL RL
Cumene	TO-15 μg/m ³	ND		0.66		ND		0.74		ND		0.72		ND		0.6	_			0.70		ND		0.62 5.0	ND	UJ 4D	0.68 5.4
Cyclohexane	TO-15 μg/m ³	ND		0.61	3.7	ND		0.87	4.1	ND		0.85		ND		0.59						9.2		0.57 3.5	ND	UJ 4D	0.62 3.8
Dibromochloromethane	TO-15 μg/m ³	ND		1.6	9.1	ND		1.4	10	ND		1.4	9.8	ND		1.5	_			1.6	9.7	ND		1.5 8.6	ND	UJ 4D	1.6 9.4
Dibromomethane	TO-15 μg/m ³	ND		1.2	30	ND		1.6	34	ND		1.6	33	ND		1.1		ND		1.2	32	ND		1.1 29	ND	UJ 4D	1.2 31
Ethanol	TO-15 μg/m ³	ND		2.5	20	ND	UJ 2A-	2.4	22	ND	UJ 2A-	2.4	22	ND		2.4	_	62		2.6	21	ND		2.4 19	ND	UJ 4D	2.6 21
Ethyl Acetate	TO-15 μg/m ³	ND		0.90	15	ND		4.9	17	ND		4.8	17	ND		0.88	8 15	ND		0.96	16	ND		0.85 14	ND	UJ 4D	0.93 16
Ethylbenzene	TO-15 μg/m ³	ND		1.2	4.6	ND	UJ 3D	0.86	5.1	22	J 3D	0.84	5.0	ND		1.2	4.6	ND		1.3	4.9	9.1		1.1 4.4	ND	UJ 4D	1.2 4.8
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		0.94	18	ND		1.5	20	ND		1.4	19	ND		0.92	2 18	ND		1.0	19	ND		0.89 17	ND	UJ 4D	0.97 18
Freon 11	TO-15 μg/m ³	ND		1.3	6.0	ND		0.76	6.6	ND		0.74	6.5	ND		1.3	5.9	ND		1.4	6.4	ND		1.2 5.7	ND	UJ 4D	1.3 6.2
Freon 12	TO-15 μg/m ³	ND		0.84	5.3	ND		1.0	5.8	ND		1.0	5.7	ND		0.82	2 5.2	ND		0.89	5.6	ND		0.79 5.0	ND	UJ 4D	0.86 5.4
Freon 113	TO-15 μg/m ³	ND		1.3	8.2	ND		1.4	9.0	ND		1.4	8.8	ND		1.3	8.0	ND		1.4	8.7	ND		1.2 7.7	ND	UJ 4D	1.3 8.4
Freon 114	TO-15 μg/m ³	ND		1.3	7.5	ND		1.1	8.2	ND		1.1	8.1	ND		1.3	7.3	ND		1.4	7.9	ND		1.2 7.1	ND	UJ 4D	1.4 7.7
Freon 134a	TO-15 μg/m ³	ND		2.2	18	ND		2.6	20	ND		2.6	19	ND		2.2	18	ND		2.3	19	ND		2.1 17	ND	UJ 4D	2.3 18
Heptane	TO-15 μg/m ³	ND		1.0	4.4	ND		0.86	4.8	ND		0.84	4.7	ND		1.0	4.3	ND		1.1	4.6	ND		0.99 4.1	ND	UJ 4D	1.1 4.5
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.2	46	ND		5.6	50	ND		5.4	49	ND		4.1	45	ND		4.4	48	ND		4.0 43	ND	UJ 4D	4.3 47
Hexachloroethane	TO-15 μg/m ³	ND		41	41	ND		46	46	ND		45	45	ND		41	41	ND		44	44	ND		39 39	ND	UJ 4D	43 43
Hexane	TO-15 μg/m ³	ND		0.69	3.8	ND		0.77	4.2	ND		0.76	4.1	ND		0.68	8 3.7	ND		0.73	4.0	2,400	J 6E	0.65 3.6	ND	UJ 4D	0.71 3.9
Iodomethane	TO-15 μg/m ³	ND	UJ 5A	0.81	62	ND		3.7	68	ND		3.7	67	ND	UJ 5A	0.79	9 61	ND		0.86	66	ND	UJ 5A	0.76 59	ND	UJ 4D	0.83 64
Isopropyl ether	TO-15 μg/m ³	ND		0.53	18	ND		1.3	20	ND		1.3	19	ND		0.52	2 18	ND		0.56	19	ND		0.50 17	ND	UJ 4D	0.54 18
m- & p-Xylenes	TO-15 μg/m ³	ND		1.1	4.6	ND	UJ 3D	2.8	5.1	14	J 3D	2.7	5.0	ND		1.0	4.6	ND		1.1	4.9	38		1.0 4.4	ND	UJ 4D	1.1 4.8
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.83	15	ND		1.0	17	ND		1.0	17	ND		0.8	1 15	ND		0.88	16	ND		0.78 14	ND	UJ 4D	0.85 16
Methylene Chloride	TO-15 μg/m ³	ND		0.76	37	ND		2.3	41	ND		2.3	40	ND		0.75	5 36	ND		0.81	39	ND		0.72 35	ND	UJ 4D	0.79 38
Naphthalene	TO-15 μg/m ³	ND		4.3	11	ND	UJ 5B-	0.81	12	ND	UJ 5B-	0.79	12	ND		4.2	11	ND		4.6	12	ND		4.1 10	ND	UJ 4D	4.4 12
o-Xylene	TO-15 μg/m ³	ND		1.2	4.6	ND		1.4	5.1	ND		1.3	5.0	ND		1.1		ND		1.2	4.9	15		1.1 4.4	ND	UJ 4D	1.2 4.8
Propylbenzene	TO-15 μg/m ³	ND		0.87	5.3	ND		0.32	5.8	11		0.32		ND		0.86	6 5.2	ND			5.6	ND		0.82 5.0	ND	UJ 4D	0.90 5.4
Propylene	TO-15 μg/m ³	ND		0.54	-	ND		1.5	8.1	ND		1.5	8.0	ND		0.53	_	ND		0.58	_	ND		0.51 7.0	ND	UJ 4D	0.56 7.6
Styrene	TO-15 μg/m ³	ND		0.59		ND		0.58		ND		0.57		ND		0.58				0.63		ND		0.56 4.3	ND	UJ 4D	0.61 4.7
tert-Amyl methyl ether	TO-15 μg/m ³				18			2.9	20	ND		2.8				1.8		ND		2.0	19	ND		1.8 17		UJ 4D	1.9 18
tert-Butyl alcohol	TO-15 μg/m ³				13			1.3		ND		1.3		ND				ND		0.95				0.85 12	1	UJ 4D	0.92 13
Tetrachloroethene	TO-15 μg/m ³				7.2				8.0	ND				35		_		62				110		1.1 6.8	_		1.2 7.5
Tetrahydrofuran	TO-15 μg/m ³					9.6	J 3D		3.5	ND	UJ 3D		3.4	ND			_	ND				ND		0.60 3.0	_	UJ 4D	0.66 3.2
Toluene	TO-15 μg/m ³				4.0			1.1		ND	55 55		4.4	ND				25				5.0		0.39 3.8	ND	UJ 4D	0.43 4.1
TPH - Gasoline	TO-15 μg/m ³				440				480	ND							_	ND				4,100		410 410	1	UJ 4D	450 450
trans-1,2-Dichloroethene	TO-15 μg/m ³				4.2			1.9		ND			4.6	ND			_	ND				ND		1.0 4.0	_	UJ 4D	1.1 4.4
trans-1,3-Dichloropropene	TO-15 μg/m ³				4.8				5.4	ND		0.72	-	ND			_	ND				ND		0.80 4.6	_	UJ 4D	0.87 5.0
Trichloroethene	TO-15 μg/m ³					ND		0.80		ND		0.72		ND				8.3				ND		0.78 5.4	ND	UJ 4D	0.85 5.9
Vinyl Acetate	TO-15 μg/m ³				15			3.3		ND		3.2	-	ND		4.0		ND			16	ND		3.8 14	ND	UJ 4D	4.2 15
	TO-15 μg/m ³				19												_					ND ND		 	1		
Vinyl Bromide									21	ND		_	20	ND	-	1.2		ND	1		20			1.2 18	ND	UJ 4D	
Vinyl Chloride	TO-15 μg/m ³	ND		0.69	2.7	ND		1.2	3.0	ND		1.2	3.0	ND		0.68	2.7	ND		0.73	2.9	ΝD		0.65 2.6	ND	UJ 4D	0.71 2.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 3 of 37)

	Location ID		VW18A		I		VW18B				VW19A		1		VW19B		1		VW20A			VW20	ıR			VW21A	
	Sampling Date/Time		07/15/2021 09	:12		(07/12/2021 1	5:32			07/13/2021 0	7:23		(07/13/2021 0	8:11			08/17/2021 07:07			07/15/2021				08/30/2021 1	0:59
	Sample Depth (feet)		5.5				14.5				5.5				14.5				5.5			14.5				5.5	
	Sample Type		N				N				N				N				N			N				N	
	Field Sample ID		SG-VW18A-0)2			SG-VW18B-	02			SG-VW19A-	02			SG-VW19B-	-02			SG-VW20A-03			SG-VW20)B-02			SG-VW21A	-05
	Lab Sample ID		2107361-07/	Α			2107282-04	ŀΑ			2107282-05	ōΑ			2107282-06	6A			2108390-13A			2107361	-08A			2108676A-0)1A
	Status		Validated				Validated				Validated				Validated	1			Validated			Validat	ed			Validated	1
l			1 1			1	l	I I	l		1	I I		I		1	l		la l	1		l	l	l <u>-</u> .	L	1	1 1
Analyte	2	Result	QA Reason	_			QA Reason				QA Reason		-		QA Reason	_	-		QA Reason MDL	_		QA Reason	1	RL	Result	QA Reason	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	TO-15 μg/m ³ TO-15 μg/m ³	ND ND		1.4	29 5.7	ND ND		1.5 0.46	30	ND ND		0.43	28 5.5	ND ND	UJ 4D UJ 4D	1.6 0.49		ND ND	0.42		ND ND	UJ 4D UJ 4D	200	3,900 770	ND 6.0	UJ 4D J- 4D	1.5 3 0.47 6
1,1,2,2-Tetrachloroethane		ND							5.9						UJ 4D	0.49		ND				UJ 4D	60			UJ 4D	1 1
1,1,2,Z-Tetracriloroethane	TO-15 μg/m ³			0.68	7.2	ND		0.70	7.5	ND		0.65	6.9	ND					0.64		ND	UJ 4D	91	970	ND	UJ 4D	0.70 7
* *	TO-15 μg/m ³	ND		0.92	5.7	ND		0.95	5.9	ND		0.88	5.5	ND	UJ 4D	_	6.2	ND	0.86		ND	1	120	770	ND	1	0.96 6
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.89	4.2	ND		0.92	4.4	ND		0.85	4.1	ND	UJ 4D	1	4.6	ND	0.84	1	ND	UJ 4D	120	570	ND	UJ 4D	0.92 4
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.4	4.2	ND		1.4	4.3	ND		1.3	4.0	ND	UJ 4D	_	4.5	ND	1.3	3.9		UJ 4D	180	560	ND	UJ 4D	1.4 4
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.5	11	ND		2.6	12	ND		2.4	11	1,200	J- 4D	2.7	12	ND	2.3		98,000	J- 4D	330	1,500	49	J- 4D	2.6 1
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.6	25	ND		1.6	26	ND		1.5	24	ND	UJ 4D		27	ND	1.5	+	ND	UJ 4D	210	3,400	ND	UJ 4D	1.6 2
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.7	31	ND		2.8	32	ND		2.6	30	ND	UJ 4D		34	ND	2.6	+	ND	UJ 4D	370	4,200	ND	UJ 4D	2.9 3
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND			5.2	ND		0.62	5.4	ND		0.57	5.0	ND	UJ 4D	0.65		7.7	0.56	_	ND	UJ 4D	80	690	8.5	J- 4D,2A+	0.62 5
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.3	40	ND		1.4	42	ND		1.3	39	ND	UJ 4D			ND	1.2	1	ND	UJ 4D	180	5,400	ND	UJ 4D	1.4 4
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.6		ND		1.6	8.4	ND		1.5	7.8	ND	UJ 4D		8.8	ND	1.5			UJ 4D	210	1,100	ND	UJ 4D	1.6 8
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.71		ND		0.74	6.6	ND		0.68	6.1	ND	UJ 4D	0.77		ND	0.67	_		UJ 4D	96	850	ND	UJ 4D	0.74 6
1,2-Dichloroethane	TO-15 μg/m ³	ND			4.2	ND		0.72	4.4	ND		0.67	4.1	ND	UJ 4D	0.76		ND	0.66	+	ND	UJ 4D	94	570	ND	UJ 4D	0.73 4
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.2	4.8	ND		1.2	5.0	ND		1.1	4.7	ND	UJ 4D		5.3	ND	1.1		ND	UJ 4D	160	650	ND	UJ 4D	1.2 5
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.1	5.2	ND		1.1	5.4	ND		1.0	5.0	ND	UJ 4D		5.6	ND	1.0	1	ND	UJ 4D	140	690	3.8	J- 4D,6G	1.1 5
1,3-Butadiene	TO-15 μg/m ³	ND			2.3	ND		0.70	2.4	ND		0.64	2.2	ND	UJ 4D	0.73		ND	0.63		ND	UJ 4D	90	310	ND	UJ 4D	0.70 2
1,3-Dichlorobenzene	TO-15 μg/m ³	ND			6.3	ND		0.75	6.6	ND		0.69	6.1	ND	UJ 4D	0.78		ND		6.0	ND	UJ 4D	97	850	ND	UJ 4D	0.75 6
1,4-Dichlorobenzene	TO-15 μg/m ³	ND			6.3	ND		0.78	6.6	ND		0.72	6.1	ND	UJ 4D	1	6.8	ND	†	6.0	ND	UJ 4D	100	850	ND	UJ 4D	0.78 6
1,4-Dioxane	TO-15 μg/m ³	ND		2.2	15	ND		2.3	16	ND		2.1	14	ND	UJ 4D	2.4	16	ND	2.1		ND	UJ 4D	300	2,000	ND	UJ 4D	2.3 1
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.58	4.9	ND		0.60	5.1	ND		0.55	4.7	ND	UJ 4D	0.62		ND	0.54		ND	UJ 4D	77	660	ND	UJ 4D	0.60 5
2-Butanone (Methyl Ethyl Ketone	,	ND		1.9	12	ND		2.0	13	ND		1.8	12	ND	UJ 4D	2.0	13	ND	1.8	12	ND	UJ 4D	250	1,700	7.6	J- 4D,6G	2.0 1
2-Hexanone	TO-15 μg/m ³	ND	 	0.41	17	ND		0.43	18	ND		0.40	16	ND	UJ 4D	0.45	19	ND	0.39		ND	UJ 4D	55	2,300	0.72	J- 4D,6G	0.43 1
2-Propanol	TO-15 μg/m ³	ND		0.77	10	18		0.80	11	ND		0.74	9.9	ND	UJ 4D	0.84	11	ND	0.73		ND	UJ 4D	100	1,400	16	J- 4D,3E	0.81 1
3-Chloropropene	TO-15 μg/m ³	ND		2.9	13	ND		3.0	14	ND		2.8	13	ND	UJ 4D	3.1	14	ND	2.7	12	ND	UJ 4D	380	1,800	ND	UJ 4D	3.0 1
4-Ethyltoluene	TO-15 μg/m ³	ND		1.0	5.2	ND		1.1	5.4	ND		1.0	5.0	ND	UJ 4D		5.6	7.3	0.99		ND	UJ 4D	140	690	7.2	J- 4D	1.1 5.
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.0	4.3	ND		1.1	4.5	ND		0.98	4.1	ND	UJ 4D	1.1	4.7	ND	0.96	_	790	J- 4D	140	580	ND	UJ 4D	1.1 4.
Acetone	TO-15 μg/m ³	27		2.5	25	ND		2.6	26	ND		2.4	24	31	J- 4D	2.7	27	ND	2.3		ND	UJ 4D	330	3,300	32	J- 4D,3E	2.6 2
Acrolein	TO-15 μg/m ³	ND	UJ 5F	1.4		ND	UJ 5F	1.5		ND	UJ 5F		_	ND	UJ 4D,5F	1.6		ND		9.1	ND	UJ 4D,5F	190	1,300	ND	UJ 4D,5F	1.5 1
Acrylonitrile	TO-15 μg/m ³	ND			9.1					ND		0.54		ND	UJ 4D	0.60		ND		8.6		UJ 4D	75	1,200	ND	UJ 4D	0.58 9
alpha-Chlorotoluene	TO-15 μg/m ³	ND			5.4					ND				ND	UJ 4D	0.53		ND		5.1	ND	UJ 4D	66	730	ND	UJ 4D	0.51 5
Benzene	TO-15 μg/m ³	ND		0.63		ND		0.66		ND		0.61	3.2	ND	UJ 4D	0.69		ND		3.2		UJ 4D	85	450	3.1	J- 4D,6G	0.66 3
Bromodichloromethane	TO-15 μg/m ³	ND				ND				ND		1.0	6.8	ND	UJ 4D	1.1		ND		6.6		UJ 4D	140	940	ND	UJ 4D	1.1 7.
Bromoform	TO-15 μg/m ³	ND		1.1		ND		1.2		ND		1.1	10	ND	UJ 4D	1.2		ND	1.1	+	ND	UJ 4D	150	1,400	ND	UJ 4D	1.2 1
Bromomethane	TO-15 μg/m ³	ND		1.8		ND		1.8	42	ND		1.7	39	ND	UJ 4D	1.9		ND		38	ND	UJ 4D	240	5,500	ND	UJ 4D	1.8 4
Carbon Disulfide	TO-15 μg/m ³	ND		1.3		ND		1.3	14	ND		1.2	12	ND	UJ 4D	1.4		ND	1.2		ND	UJ 4D	170	1,800	2.9	J- 4D,6G	1.3 1
Carbon Tetrachloride	TO-15 μg/m ³	ND				ND		1.8		ND			6.4	ND	UJ 4D	1.9		ND		6.2		UJ 4D	230	890	ND	UJ 4D	1.8 6
Chlorobenzene	TO-15 μg/m ³	ND				ND		0.46		ND		0.42		ND	UJ 4D	0.48		ND	 	4.6		UJ 4D	59	650	ND	UJ 4D	0.46 5
Chloroethane	TO-15 μg/m ³	ND		2.8	11	ND		3.0	12	ND		2.7	11	ND	UJ 4D	3.1		ND	2.7		ND	UJ 4D	380	1,500	ND	UJ 4D	3.0 1
Chloroform	TO-15 μg/m ³	ND		0.44		120		0.46				0.42	4.9	59	J- 4D	0.48		ND	0.41		ND	UJ 4D	59	690	9.1	J- 4D	0.46 5
Chloromethane	TO-15 μg/m ³	ND		1.5	22	ND		1.6	22	ND		1.5	21	ND	UJ 4D	1.6		ND	1.4		ND	UJ 4D	200	2,900	ND	UJ 4D	1.6 2
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND			4.2	ND				ND				ND	UJ 4D			ND	1.4			UJ 4D	200	560	ND	UJ 4D	1.6 4.
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.92	4.8	ND		0.96	4.9	ND		0.89	4.6	ND	UJ 4D	1.0	5.2	ND	0.87	4.5	ND	UJ 4D	120	640	ND	UJ 4D	0.96 5

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 4 of 37)

	Location ID		VW18A		1		VW18B		1	VW	10Δ		T		VW19B				VW20A		l l	VW2	0B			VW21A	
	Sampling Date/Time	(07/15/2021 09:	·12		(07/12/2021 15:32)		07/13/20		3		07/	/13/2021 08	·11			08/17/2021 07:07	•		07/15/202				08/30/2021	
	Sample Depth (feet)	Ì	5.5			`	14.5	•		5.				0.,	14.5				5.5			14.				5.5	10.00
	Sample Type		N				N			1					N				N			N				N	
	Field Sample ID		SG-VW18A-0	2			SG-VW18B-02			SG-VW	19A-02			S	G-VW19B-0)2			SG-VW20A-03			SG-VW2	20B-02			SG-VW21A	\ -05
	Lab Sample ID		2107361-07	4			2107282-04A			210728				2	2107282-06/	4			2108390-13A			210736				2108676A-	
	Status		Validated				Validated			Valid	ated		-		Validated				Validated			Valida	ated			Validate	<u>d</u>
Analyte	Method Units	Result	QA Reason I	MDL	RL	Result	QA Reason MD	L l RL	R	esult QA Re	ason ME	DL I RL	Resul	t I Q	A Reason	MDL	l RL	Result	QA Reason MD	L l RL	Result	QA Reaso	n MDL	RL	Result	QA Reason	n MDL RL
Cumene	TO-15 μg/m ³	ND		0.65	_	ND	0.6		_	ND .	0.6	_				0.71		ND	0.6			UJ 4D	87	690	ND	UJ 4D	0.68 5.4
Cyclohexane	TO-15 μg/m ³	ND		0.59		ND	0.6	_	_	ND	0.5		-	l		0.64		3.4	0.5	_	ND	UJ 4D	80	480	ND	UJ 4D	0.62 3.8
Dibromochloromethane	TO-15 μg/m ³	ND		1.5	8.9	ND	1.			ND	1.				JJ 4D	1.6	9.7	ND	1.4		ND	UJ 4D	200	1,200	ND	UJ 4D	1.6 9.3
Dibromomethane	TO-15 μg/m ³	ND		1.1	30	ND	1.		+	ND	1.			L	JJ 4D	1.2	32	ND	1.	_	ND	UJ 4D	150	4,000	ND	UJ 4D	1.2 31
Ethanol	TO-15 μg/m ³	22		2.4	20	ND	2.	_		ND	2.			L	JJ 4D	2.6	21	22	2.3		ND	UJ 4D	330	2,600	7.1	J- 4D,6G	2.6 21
Ethyl Acetate	TO-15 μg/m ³	ND		0.88	15	ND	0.9		+	ND	0.6	_		_		0.96	-	ND	0.8		ND	UJ 4D	120	2,000	ND	UJ 4D	0.92 16
Ethylbenzene	TO-15 μg/m ³	ND		1.2	4.6	ND	1.		,	ND	1.		-	L	JJ 4D	1.3		7.0	1.1		ND	UJ 4D	160	610	2.4	J- 4D,6G	1.2 4.8
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		0.92	18	ND	0.9	6 18		ND	0.0	39 17	ND	l	JJ 4D	1.0	19	ND	0.8			UJ 4D	120	2,400	ND	UJ 4D	0.96 18
Freon 11	TO-15 μg/m ³	ND		1.3	5.9	ND	1.	3 6.1		9.2	1.	2 5.7	14	,	J- 4D	1.4	6.4	ND	1.2	2 5.6	ND	UJ 4D	170	790	1.8	J- 4D,6G	1.3 6.2
Freon 12	TO-15 μg/m ³	ND		0.82		22	3.0	5 5.4	ı	54	0.7	79 5.0	67	١,	J- 4D	0.89	5.6	ND	0.7	7 4.9	ND	UJ 4D	110	700	ND	UJ 4D,3E	0.86 5.4
Freon 113	TO-15 μg/m ³	ND		1.3	8.0	ND	1.		ı	ND	1.	2 7.7	ND	l	JJ 4D	1.4	8.7	ND	1.2			UJ 4D	170	1,100	ND	UJ 4D	1.3 8.4
Freon 114	TO-15 μg/m ³	ND		1.3	7.3	ND	1.	4 7.6	6	ND	1.	2 7.1	ND	J	JJ 4D	1.4	8.0	ND	1.2	6.9	ND	UJ 4D	180	980	ND	UJ 4D	1.4 7.6
Freon 134a	TO-15 μg/m ³	ND		2.2	18	ND	2.	2 18		ND	2.	1 17	ND	J	JJ 4D	2.3	19	ND	2.0	16	ND	UJ 4D	290	2,400	ND	UJ 4D	2.2 18
Heptane	TO-15 μg/m ³	ND		1.0	4.3	ND	1.	1 4.5	5	ND	0.9	9 4.1	ND	J	JJ 4D	1.1	4.7	ND	0.9	7 4.0	ND	UJ 4D	140	580	ND	UJ 4D	1.1 4.5
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.1	45	ND	4.	3 46	;	ND	4.	0 43	ND	J	JJ 4D	4.5	49	ND	3.9	42	ND	UJ 4D	550	6,000	ND	UJ 4D	4.3 47
Hexachloroethane	TO-15 μg/m ³	ND		41	41	ND	4:	2 42		ND	39	9 39	ND	L	JJ 4D	44	44	ND	38	38	ND	UJ 4D	5,500	5,500	ND	UJ 4D	42 42
Hexane	TO-15 μg/m ³	ND		0.68	3.7	ND	0.7	0 3.8	3	ND	0.6	3.6	ND	L	JJ 4D	0.73	4.0	350	0.6	4 3.5	ND	UJ 4D	91	500	52	J- 4D,3E	0.70 3.8
Iodomethane	TO-15 μg/m³	ND	UJ 5A	0.79	61	ND	0.0	2 63		ND	0.7	76 59	ND	L	JJ 4D	0.86	66	ND	UJ 5A 0.7	5 57	ND	UJ 4D,5A	110	8,200	ND	UJ 4D,5A	0.83 64
Isopropyl ether	TO-15 μg/m³	ND	1	0.52	18	ND	0.5	4 18		ND	0.5	50 17	ND	L	JJ 4D	0.56	19	ND	0.4	9 16	ND	UJ 4D	70	2,400	ND	UJ 4D	0.54 18
m- & p-Xylenes	TO-15 μg/m ³	ND		1.0	4.6	ND	1.	1 4.7	,	ND	1.	0 4.4	ND	l	JJ 4D	1.1	5.0	28	0.9	9 4.3	ND	UJ 4D	140	610	6.5	J- 4D	1.1 4.8
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.81	15	ND	9.0	4 16		ND	0.7	78 14	ND	L	JJ 4D	0.88	16	ND	0.7	6 14	ND	UJ 4D	110	2,000	ND	UJ 4D	0.85 16
Methylene Chloride	TO-15 μg/m ³	ND		0.75	36	ND	0.7	8 38		ND	0.7	72 35	ND	l	JJ 4D	0.81	40	ND	0.7	1 34	ND	UJ 4D	100	4,900	ND	UJ 4D	0.78 38
Naphthalene	TO-15 μg/m ³	ND		4.2	11	ND	4.	4 11		ND	4.	1 10	ND	L	JJ 4D	4.6	12	ND	4.0	_	ND	UJ 4D	570	1,500	ND	UJ 4D	4.4 11
o-Xylene	TO-15 μg/m ³	ND		1.1	4.6	ND	1.	2 4.7	'	ND	1.	_	. ND	L	JJ 4D	1.2	5.0	9.7	1.1	1 4.3	ND	UJ 4D	150	610	3.1	J- 4D,6G	1.2 4.8
Propylbenzene	TO-15 μg/m ³	ND		0.86	5.2	ND	0.0		1	ND	3.0			l			5.6	ND	0.8		1	UJ 4D	120	690	1.5	J- 4D,6G	0.89 5.4
Propylene	TO-15 μg/m ³	ND		0.53		ND	0.5		_	ND	0.5					0.58		ND		0 6.8		UJ 4D	72	970	ND	UJ 4D	0.56 7.5
Styrene	TO-15 μg/m ³	ND		0.58		ND	0.6		_	ND	0.5					0.63		ND		5 4.2		UJ 4D	78	600	ND	UJ 4D	0.60 4.7
tert-Amyl methyl ether	TO-15 μg/m ³			1.8			1.		_	ND			ND			2.0			1.7	_			250	2,400	ND	UJ 4D	1.9 18
tert-Butyl alcohol	TO-15 μg/m ³	ND			13			2 13	_	ND			ND				14			3 12	_		120	1,700	1	UJ 4D	0.92 13
Tetrachloroethene	TO-15 μg/m ³	490				350		2 7.4	_				260				7.7			1 6.7			150	960	170	J- 4D	1.2 7.4
Tetrahydrofuran	TO-15 μg/m ³	ND			3.1			5 3.2					ND				3.4			9 2.9			84	420	1.6	J- 4D,6G	0.65 3.2
Toluene	TO-15 μg/m ³	4.8			4.0			2 4.1	_				ND				4.3			8 3.7			55	530	13	J- 4D	0.42 4.1
TPH - Gasoline	TO-15 μg/m ³	ND			430			0 440					ND				470			0 400				58,000		UJ 4D,3E	450 450
trans-1,2-Dichloroethene	TO-15 μg/m ³	ND				ND		1 4.3	_				ND	_			4.5			3.9			140	560	ND	UJ 4D	1.1 4.3
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND				ND		6 4.9	_				ND	_			5.2			8 4.5	_		110	640	ND	UJ 4D	0.86 5.0
Trichloroethene	TO-15 μg/m ³	ND						5.8		ND			ND				6.1		1 1	7 5.3			110	760	23	J- 4D	0.85 5.9
Vinyl Acetate	TO-15 μg/m ³	ND		4.0			4.			ND		_	ND					ND		3 14	_		540	2,000		UJ 4D	4.2 15
Vinyl Bromide	TO-15 μg/m ³	ND				ND	1.			ND			ND	_			20			2 17		+	170	2,500		UJ 4D	1.3 19
Vinyl Chloride	TO-15 μg/m ³	ND		0.68	2.7	ND	0.7	0 2.8	3	ND	0.6	55 2.6	ND	l	JJ 4D	0.74	2.9	ND	0.6	4 2.5	ND	UJ 4D	91	360	ND	UJ 4D	0.71 2.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 5 of 37)

	Location ID		VW21A			VW21B				VW22A				VW22B				VW23B			VW24A	\	1	VW24B		—
	Sampling Date/Time		08/30/2021 11:	:25		07/15/2021 14	:55			07/14/2021 1				07/14/2021 13	3:10		(07/14/2021 11:37	7		08/17/2021		1	07/14/2021 (
	Sample Depth (feet)		5.5			14.5				5.5				14.5				14.5			5.5			14.5		
	Sample Type		FR			N				N				N				N			N		1	N		
	Field Sample ID		SG-VW21A-0		1	SG-VW21B-				SG-VW22A				SG-VW22B-				SG-VW23B-02			SG-VW24		1	SG-VW24E		
	Lab Sample ID		2108676B-02	A		2107361-11	A			2107284-2				2107284-25				2107284-23A			2108390-1			2107284-2		
	Status		Validated			Validated				Validated	<u>d</u>			Validated				Validated			Validate	d		Validate	d	
Analyte	Method Units	Result	QA Reason	MDL RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL F	Result	QA Reason MI	DL F	RL Res	ult QA Reaso	n MDL RL	Result	QA Reasor	MDL	RL
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	UJ 4D	1.1 30	ND		1.5	29	ND		1.1	30	ND	UJ 4D	1.1	30	ND	1.	1 2	29 NI)	1.4 28	ND		1.2	33
1,1,1-Trichloroethane	TO-15 μg/m ³	5.2	J- 4D,6G	0.73 6.0	ND		0.46	5.8	ND		0.72	5.9	ND	UJ 4D	0.71	5.9	ND	0.7	70 5	.8 NI)	0.43 5.5	ND		0.80	6.6
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND	UJ 4D	0.59 7.6	ND		0.69	7.3	ND		0.58	7.5	ND	UJ 4D	0.58	7.4	ND	0.5	57 7	.3 NI)	0.65 6.9	ND		0.65	8.3
1,1,2-Trichloroethane	TO-15 μg/m ³	ND	UJ 4D	0.82 6.0	ND		0.94	5.8	ND		0.81	5.9	ND	UJ 4D	0.80	5.9	ND	0.7	79 5	.8 NI)	0.88 5.5	ND		0.90	6.6
1,1-Dichloroethane	TO-15 μg/m ³	ND	UJ 4D	0.59 4.5	ND		0.90	4.3	ND		0.58	4.4	ND	UJ 4D	0.57	4.4	ND	0.5	56 4	.3 NI)	0.85 4.1	ND		0.64	4.9
1,1-Dichloroethene	TO-15 μg/m ³	ND	UJ 4D	0.92 4.4	ND		1.4	4.2	ND		0.90	4.3	ND	UJ 4D	0.89	4.3	ND	3.0	38 4	.2 NI)	1.3 4.0	ND		1.0	4.8
1,1-Difluoroethane	TO-15 μg/m ³	48	J- 4D	2.3 12	ND		2.5	12	ND		2.2	12	48	J- 4D	2.2	12	24	2.		12 18	3	2.4 11	ND		2.5	13
1,2,3-Trichloropropane	TO-15 μg/m ³	ND	UJ 4D	2.0 27	ND		1.6	26	ND		2.0	26	ND	UJ 4D		26	ND	2.		26 NI)	1.5 24	ND		2.2	29
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND	UJ 4D	3.7 33	ND		2.8	32	ND		3.6	32	ND	UJ 4D		32	ND	3.		32 NI)	2.6 30	ND		4.0	_
1,2,4-Trimethylbenzene	TO-15 μg/m ³	9.2	J- 4D	2.0 5.4				5.2	16		2.0	5.4	ND	UJ 4D		5.3	ND	1.		.2 7.	1	0.57 5.0			_	_
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND	UJ 4D	4.1 43				41	ND		4.0	42	ND	UJ 4D		42	ND	4.		1 NI)	1.3 39	+		-	47
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND	UJ 4D	0.72 8.5	_			8.2	ND		0.70		ND	UJ 4D	0.70		ND	0.6		.2 NI)	1.5 7.8			0.78	9.3
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	UJ 4D	0.57 6.7	ND		0.72	6.4	ND		0.56	6.6	ND	UJ 4D	0.55		ND	0.5		.4 NI)	0.68 6.1	ND		-	7.3
1,2-Dichloroethane	TO-15 μg/m ³	ND	UJ 4D	0.90 4.5	ND			4.3	ND		0.89	4.4	ND	UJ 4D		4.4	ND	3.0		.3 NI)	0.67 4.1	ND		0.98	4.9
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 4D	1.7 5.1	ND		1.2	4.9	ND	UJ 5A	1.7	5.0	ND	UJ 4D,5A	1.7	5.0	ND	UJ 5A 1.	6 4	.9 NI)	1.1 4.7	ND	UJ 5A	1.9	5.6
1,3,5-Trimethylbenzene	TO-15 μg/m ³	3.7	J- 4D,6G	0.85 5.4	ND			5.3	ND		0.83	5.4	ND	UJ 4D	0.82		ND	3.0		.2 NI)	1.0 5.0	ND			5.9
1,3-Butadiene	TO-15 μg/m ³	ND	UJ 4D,2A-,5A	0.81 2.4	ND			2.4	ND		0.80	2.4	ND	UJ 4D	0.78		ND	0.7		.4 NI)	0.64 2.2	+		0.88	_
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	UJ 4D	0.85 6.7	ND			6.4	ND		0.84	6.6	ND	UJ 4D	0.83		ND	3.0		.4 NI)	0.69 6.1	ND			7.3
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	UJ 4D	0.43 6.7	ND	1		6.4	ND		0.42	6.6	ND	UJ 4D	0.42		ND	0.4		.4 NI)	0.72 6.1	ND			7.3
1,4-Dioxane	TO-15 μg/m ³	ND	UJ 4D	0.79 16	ND		2.3	15	ND		0.78	16	ND	UJ 4D	0.77	15	ND	0.7	76 1	5 NI)	2.1 14	ND		0.86	17
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	UJ 4D	0.40 5.2	ND			5.0	ND		0.39	5.1	ND	UJ 4D		5.0	ND	0.3		.0 NI)	0.55 4.7	ND		0.44	1 1
2-Butanone (Methyl Ethyl Ketone		4.9	J- 4D,6G	2.3 13	ND		1.9	13	ND		2.3	13	ND	UJ 4D	2.2	13	ND	2.	2 1	I2 NI)	1.8 12	ND		2.5	14
2-Hexanone	TO-15 μg/m ³	ND	UJ 4D	1.5 18	ND		0.42	18	ND		1.5	18	ND	UJ 4D	•	18	ND	1.		17 NI)	0.40 16	ND		1.7	20
2-Propanol	TO-15 μg/m ³	8.7	J- 4D,6G,3E	0.73 11	11		0.79	10	11	J 6G	0.72	11	12	J- 4D		10	13	0.7	70 1	10 1:	3	0.74 9.9	19		0.80	12
3-Chloropropene	TO-15 μg/m ³	ND	UJ 4D	1.4 14	ND		2.9	13	ND		1.4	14	ND	UJ 4D	1.4	13	ND	1.	4 1	3 NI)	2.8 13	ND		1.5	15
4-Ethyltoluene	TO-15 μg/m ³	7.1	J- 4D	1.4 5.4	ND		1.1	5.3	13		1.4	5.4	ND	UJ 4D	1.3	5.3	ND	1.	3 5	.2 7.	1	1.0 5.0	ND		1.5	5.9
4-Methyl-2-pentanone	TO-15 μg/m ³	ND	UJ 4D	0.68 4.5	ND		1.0	4.4	ND		0.67	4.5	ND	UJ 4D	0.66	4.4	ND	0.0	66 4	.4 NI)	0.98 4.1	ND		0.74	5.0
Acetone	TO-15 μg/m ³	18	J- 4D,6G,3E	1.9 26	34		2.5	25	ND		1.9	26	46	J- 4D	1.8	26	ND	1.		25 2 9	5	2.4 24	ND		2.1	29
Acrolein	TO-15 μg/m ³		UJ 4D,5F	3.1 10	ND	UJ 5F	1.5	9.8	ND	UJ 5F	3.0	10	ND	UJ 4D,5F	3.0	9.8	ND	UJ 5F 2.	9 9	.8 NI	D UJ 5F	1.4 9.3	ND	UJ 5F	3.3	11
Acrylonitrile	TO-15 μg/m ³	ND	UJ 4D	0.91 9.6	ND		0.57		ND		0.90		ND	UJ 4D	0.88	9.3	ND	3.0	38 9	.2 NI)	0.54 8.8	ND		1.0	10
alpha-Chlorotoluene	TO-15 μg/m ³	ND	UJ 4D	0.46 5.7			0.50		ND		0.45	5.6	ND	UJ 4D	0.45	5.6	ND	0.4	14 5	.5 NI)	0.47 5.2	ND		0.50	6.3
Benzene	TO-15 μg/m ³	2.6		0.27 3.5			0.64		ND		0.26		ND	UJ 4D	0.26		ND			.4 NI			ND		0.29	
Bromodichloromethane	TO-15 μg/m ³		UJ 4D	1.4 7.4	ND		1.1	7.2	ND		1.4	7.3	ND	UJ 4D	1.4	7.2	ND	1.	4 7	.1 NI)	1.0 6.8	ND	1	1.6	8.1
Bromoform	TO-15 μg/m ³	ND	UJ 4D	0.99 11	ND		1.2	11	ND		0.97	11	ND	UJ 4D	0.96	11	ND	0.0	95 1	1 NI)	1.1 10	ND	1	1.1	12
Bromomethane	TO-15 μg/m ³	ND	UJ 4D	1.9 43	ND		1.8	42	ND		1.9	42	ND	UJ 4D	1.9	42	ND	1.	8 4	11 NI	0	1.7 39	ND		2.1	47
Carbon Disulfide	TO-15 μg/m ³	6.1	J- 4D,6G	3.2 14	ND		1.3	13	ND		3.2	14	ND	UJ 4D	3.1	13	21	3.	1 1	13 19	5	1.2 12	ND		3.5	15
Carbon Tetrachloride	TO-15 μg/m ³	ND	UJ 4D	1.1 7.0	ND		1.8	6.7	ND		1.1	6.8	ND	UJ 4D	1.1	6.8	ND	1.	1 6	.7 NI)	1.7 6.4	ND		1.2	7.6
Chlorobenzene	TO-15 μg/m ³	ND	UJ 4D	0.45 5.1				4.9	ND		0.44	5.0	ND	UJ 4D	0.43		ND	0.4	43 4	.9 NI	0	0.42 4.6	ND			5.6
Chloroethane	TO-15 μg/m ³	ND	UJ 4D	2.4 12			2.9	11	ND		2.3	12	ND	UJ 4D	2.3	11	ND	2.	3 1	1 NI)	2.7 11	ND		2.6	13
Chloroform	TO-15 μg/m ³	8.6	J- 4D	0.64 5.4	21		0.45	5.2	12		0.63	5.3	26	J- 4D	0.62	5.2	ND	0.0	52 5	.2 NI)	0.42 4.9	ND		0.70	5.9
Chloromethane	TO-15 μg/m ³	ND	UJ 4D	2.4 23				22	ND		2.4	22	ND	UJ 4D		22	ND	2.	_	22 NI	D	1.5 21	ND		2.6	25
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND	UJ 4D	0.79 4.4				4.2	ND		0.78		ND	UJ 4D	0.77	4.3	ND	0.7		.2 NI)	1.4 4.0			0.86	4.8
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	UJ 4D	0.73 5.0			0.94	4.8	ND		0.72		ND	UJ 4D	0.71	4.9	ND			.8 NI		0.89 4.6			0.80	

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 6 of 37)

	Location ID	Ì	VW21A			VW21B				VW22A				VW22B			VW23B				VW24A			VW24B		
	Sampling Date/Time		08/30/2021 11:	:25		07/15/2021 14	:55			07/14/2021 12	2:40		(v vvzzb 07/14/2021 13	3:10		07/14/2021 11:	:37			08/17/2021 08:25			07/14/2021 09):47	
	Sample Depth (feet)		5.5	0		14.5	.00			5.5			,	14.5	J. 10		14.5	.01			5.5			14.5		
	Sample Type		FR			N				N				N			N				N			N		
	Field Sample ID		SG-VW21A-0			SG-VW21B-0				SG-VW22A-				SG-VW22B-			SG-VW23B-0				SG-VW24A-05			SG-VW24B-0		
	Lab Sample ID		2108676B-02	Α		2107361-11	4			2107284-24				2107284-25			2107284-23	4			2108390-15A			2107284-20	A	
	Status		Validated		+	Validated		_		Validated				Validated		-	Validated				Validated			Validated		
Analyte	Method Units	Result	QA Reason	MDL R	Result	QA Reason	MDL	RL R	esult	QA Reason	MDL	RL	Result	QA Reason	MDL R	L Res	ılt QA Reason	MDL	RL	Result	QA Reason MDI	RL	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m ³	ND	UJ 4D	0.70 5.	4 ND		0.66	5.2	ND		0.68	5.4	ND	UJ 4D	0.67 5.	.3 NI)	0.67	5.2	ND	0.62	5.0	ND		0.76	5.9
Cyclohexane	TO-15 μg/m ³	ND	UJ 4D	0.82 3.	B ND		0.61	3.7	ND		0.80	3.8	ND	UJ 4D	0.79 3.	.7 NI		0.79	3.7	3.7	0.57	3.5	ND		0.89	4.2
Dibromochloromethane	TO-15 μg/m ³	ND	UJ 4D	1.3 9.	4 ND		1.6	9.1	ND		1.3	9.3	ND	UJ 4D	1.3 9.	.2 NI		1.3	9.1	ND	1.5	8.6	ND		1.4	10
Dibromomethane	TO-15 μg/m ³	ND	UJ 4D	1.5 32	2 ND		1.2	30	ND		1.5	31	ND	UJ 4D	1.5 3	0 NI		1.5	30	ND	1.1	29	ND		1.7	34
Ethanol	TO-15 μg/m ³	4.6	J- 4D,6G	2.3 2	I ND		2.5	20	ND		2.2	20	39	J- 4D	2.2 2	0 NI		2.2	20	22	2.4	19	ND		2.5	23
Ethyl Acetate	TO-15 μg/m ³	ND	UJ 4D	4.6 16	S ND		0.90	15	ND		4.5	16	ND	UJ 4D	4.4 1	5 NI		4.4	15	ND	0.88	14	ND		5.0	17
Ethylbenzene	TO-15 μg/m ³	1.9	J- 4D,6G	0.81 4.	B ND		1.2	4.6	6.5		0.79	4.7	ND	UJ 4D	0.78 4.	.7 NI		0.77	4.6	6.9	1.1	4.4	ND		0.88	5.2
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND	UJ 4D	1.4 18	3 ND		0.94	18	ND		1.4	18	ND	UJ 4D	1.3 1	8 NI		1.3	18	ND	0.89	17	ND		1.5	20
Freon 11	TO-15 μg/m ³	1.4	J- 4D,6G	0.72 6.	2 ND		1.3	6.0	ND		0.70	6.1	ND	UJ 4D	0.69 6.	.0 NI		0.69	6.0	ND	1.2	5.7	ND		0.78	6.8
Freon 12	TO-15 μg/m ³	17	J- 4D,3E	0.99 5.	5 ND		0.84	5.3	ND		0.97	5.4	ND	UJ 4D	0.96 5	.3 NI		0.95	5.3	7.8	0.79	5.0	20		1.1	6.0
Freon 113	TO-15 μg/m ³	ND	UJ 4D	1.3 8.	5 ND		1.3	8.2	ND		1.3	8.4	ND	UJ 4D	1.3 8.	.2 NI		1.3	8.2	ND	1.2	7.7	ND			9.3
Freon 114	TO-15 μg/m ³	ND	UJ 4D	1.1 7.	B ND		1.3	7.5	ND		1.0	7.6	ND	UJ 4D	1.0 7.	.5 NI		1.0	7.4	ND	1.2	7.1	ND		1.2	8.4
Freon 134a	TO-15 μg/m ³	ND	UJ 4D	2.5 18	3 ND		2.2	18	ND		2.4	18	ND	UJ 4D	2.4 1	8 NI		2.4	18	ND	2.1	17	ND		2.7	20
Heptane	TO-15 μg/m ³	ND	UJ 4D	0.81 4.	5 ND		1.0	4.4	ND		0.80	4.5	ND	UJ 4D	0.79 4.	.4 NI)	0.78	4.4	ND	0.99	4.1	ND		0.89	5.0
Hexachlorobutadiene	TO-15 μg/m ³	ND	UJ 4D	5.2 47	7 ND		4.2	46	ND		5.1	46	ND	UJ 4D	5.1 4	6 NI)	5.0	45	ND	4.0	43	ND		5.7	52
Hexachloroethane	TO-15 μg/m ³	ND	UJ 4D	43 43	ND		41	41	ND		42	42	ND	UJ 4D	42 4	2 NI		41	41	ND	39	39	ND		47	47
Hexane	TO-15 μg/m ³	31	J- 4D,3E	0.72 3.	9 ND		0.69	3.8	ND		0.71	3.8	ND	UJ 4D	0.70 3.	.8 NI		0.70	3.8	270	0.68	3.6	ND		0.79	4.3
Iodomethane	TO-15 μg/m ³	ND	UJ 4D	3.5 64	I ND	UJ 5A	0.81	62	ND		3.4	63	ND	UJ 4D	3.4 6	2 NI		3.4	62	ND	UJ 5A 0.76	59	ND		3.8	70
Isopropyl ether	TO-15 μg/m ³	ND	UJ 4D	1.2 18	3 ND		0.53	18	ND		1.2	18	ND	UJ 4D	1.2 1	8 NI)	1.2	18	ND	0.50	17	ND		1.4	20
m- & p-Xylenes	TO-15 μg/m ³	7.4	J- 4D	2.6 4.	B ND		1.1	4.6	18		2.6	4.7	ND	UJ 4D	2.6 4.	.7 NI		2.5	4.6	26	1.0	4.4	ND		2.9	5.2
Methyl tert-butyl ether	TO-15 μg/m ³	ND	UJ 4D	0.98 16	S ND		0.83	15	ND		0.96	16	ND	UJ 4D	0.95 1	6 NI		0.94	15	ND	0.78	14	ND		1.1	17
Methylene Chloride	TO-15 μg/m ³	ND	UJ 4D	2.2 38	ND		0.76	37	ND		2.2	38	ND	UJ 4D	2.1 3	7 NI)	2.1	37	ND	0.72	35	ND		2.4	42
Naphthalene	TO-15 μg/m ³	ND	UJ 4D	0.76 12	2 ND		4.3	11	ND		0.74	11	ND	UJ 4D	0.73 1	1 NI)	0.73	11	ND	4.1	10	ND		0.83	
o-Xylene	TO-15 μg/m ³	3.6	J- 4D,6G	1.3 4.	_			4.6	10		1.3	4.7	ND	UJ 4D	1.2 4.)	1.2	4.6	9.2	1.1	4.4	ND		1.4	5.2
Propylbenzene	TO-15 μg/m ³	1.6	J- 4D,6G	0.89 5.	4 ND		0.87	5.3	ND		0.30	5.4	ND	UJ 4D	0.29 5.	.3 NI)	0.29	5.2	ND	0.82	5.0	ND		0.33	
Propylene	TO-15 μg/m ³	ND	UJ 4D	1.4 7.	6 ND		0.54	7.4	ND		1.4	7.5	ND	UJ 4D	1.4 7.	.4 NI)	1.4	7.3	ND	0.5	7.0	ND			8.3
Styrene	TO-15 μg/m ³		UJ 4D	0.55 4.			0.59		ND		0.54	4.6	ND	UJ 4D	0.53 4.			0.53	4.5	ND	0.56	_			0.60	5.2
tert-Amyl methyl ether	TO-15 μg/m ³		UJ 4D	2.7 18				18			2.6	18	ND	UJ 4D	2.6 1	8 NI				ND			ND			20
tert-Butyl alcohol	TO-15 μg/m ³		UJ 4D	1.2 13		1		13			1.2		ND	UJ 4D	1.2 1					ND		_	ND			15
Tetrachloroethene	TO-15 μg/m ³		J- 4D	1.3 7.				7.2			1.3		150	J- 4D	1.3 7.					260			340			8.2
Tetrahydrofuran	TO-15 μg/m ³		UJ 4D	0.71 3.				3.2			0.70		ND	UJ 4D	0.68 3.					ND			ND		0.77	
Toluene	TO-15 μg/m ³		J- 4D	1.0 4.				4.0					23	J- 4D	0.98 4					16			ND			4.6
TPH - Gasoline	TO-15 μg/m ³		J- 4D,3E	450 45				440	ND		440		ND	UJ 4D	440 44	_				650		_	ND			490
trans-1,2-Dichloroethene	TO-15 μg/m ³		UJ 4D	1.8 4.			1.1		ND		1.8	4.3	ND	UJ 4D	1.8 4.					ND			ND		2.0	
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND	UJ 4D	0.69 5.	O ND		0.84	4.8	ND		0.68	4.9	ND	UJ 4D	0.67 4.	.9 NI				ND	0.80	4.6	ND		0.76	5.5
Trichloroethene	TO-15 μg/m ³	20	J- 4D	0.75 6.	36		0.83	5.8	6.7		0.74	5.8	11	J- 4D	0.73 5.	.8 NI		0.72	5.7	10	0.78	5.4	ND		0.82	6.5
Vinyl Acetate	TO-15 μg/m ³	ND	UJ 4D	3.1 16			4.1	15	ND		3.0	15	ND	UJ 4D	3.0 1	5 NI				ND		_	ND		3.4	17
Vinyl Bromide	TO-15 μg/m ³	ND	UJ 4D	1.6 19			1.3	19	ND		1.5	19	ND	UJ 4D	1.5 1					ND	1.2	18	ND			21
Vinyl Chloride	TO-15 μg/m ³	ND	UJ 4D	1.1 2.	3 ND		0.69	2.7	ND		1.1	2.8	ND	UJ 4D	1.1 2.	.7 NI)	1.1	2.7	ND	0.65	2.6	ND		1.2	3.1

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 7 of 37)

	Location ID		VW25A				VW25B				VW26A				VW26B				VW27A				VW27B				VW27B	
	Sampling Date/Time		07/13/2021 12:	50		(07/13/2021 13	3:18			07/09/2021 1	5:03			07/15/2021 0	7:48			07/15/2021 06	3:03			07/15/2021 0	3:44			07/15/2021 0	პ:44
	Sample Depth (feet)		5.5				14.5				5.5				14.5				5.5				14.5				14.5	
	Sample Type		N CC VANOEA O	,			N CO VAVOED	00			N CC VAVOCA	00			N CC VAVOCD				N CO VIVIOZA	00			N OC MMOZD	00			FD	00
	Field Sample ID Lab Sample ID		SG-VW25A-02 2107282-11A				SG-VW25B- 2107282-12				SG-VW26A- 2107241A-2				SG-VW26B 2107361-0				SG-VW27A-0 2107361-02				SG-VW27B- 2107361-03				SG-VW27B- 2107361-04	
	Status		Validated				Validated	ZA.			Validated				Validated				Validated	А			Validated	Ж			Validated	
	Otatus		vandated				vandated				vandated				validated	<i></i>			vandated				validated				validated	
Analyte	Method Units	Result	QA Reason M	1DL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL RL
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	1.	1.7	34	ND		1.6	33	ND		1.4	29	ND		1.4	27	ND		1.5	29	ND		1.4	28	ND		1.4 28
1,1,1-Trichloroethane	TO-15 μg/m ³	ND	0	.52	6.7	ND		0.51	6.5	ND		0.45	5.7	ND		0.42	5.4	ND		0.46		ND		0.44	5.6	ND		0.44 5.6
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND	0	.79	8.4	ND		0.77		ND		0.68	7.2	ND		0.64		ND		0.69	7.3	ND		0.66	7.1	ND		0.66 7.1
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		1.1	6.7	ND		1.0		ND		0.92		ND		0.86		ND		0.94		ND		0.90		ND		0.90 5.6
1,1-Dichloroethane	TO-15 μg/m ³	ND		1.0	5.0	ND			4.8	ND		0.89		ND		0.84	4.0	ND	1	0.90		ND		0.87		ND		0.87 4.2
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.6	4.8	ND			4.7	ND		1.4	1 -	ND		1.3	3.9	ND		1.4	4.2	ND		1.3	4.1	ND		1.3 4.1
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.9	13	ND		2.8	13	21		2.5	1	ND		2.3	11	ND		2.5	12	ND		2.4	11	ND		2.4 11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND	+	1.8	30	ND		1.8	29	ND		1.6		ND		1.5	24	ND		1.6	26	ND		1.6	25	ND		1.6 25
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND	+	3.2	36	ND		3.1	35	ND		2.7	_	ND		2.6	29	ND		2.8	32	ND		2.7	30	ND		2.7 30
1,2,4-Trimethylbenzene	TO-15 μg/m ³	14		.69		ND		0.68		ND		0.60	1 -	ND		0.56		ND		0.61		11		0.58			1	0.58 5.1
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND	+	1.5	47	ND		1.5	46	ND		1.3	1 -	ND		1.2	38	ND		1.3	41	ND		1.3	40	ND		1.3 40
1.2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.8	9.4	ND			9.2	ND		1.6		ND		1.5	7.6	ND		1.6	8.2	ND		1.5	7.9	ND	 	1.5 7.9
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	.83	7.4	ND			7.2	ND		0.71	-	ND		0.67	6.0	ND		0.72	+	ND		0.70	1	ND		0.70 6.2
1,2-Dichloroethane	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	.81	5.0	ND		0.79		ND		0.70	1 -	ND		0.66	4.0	ND		0.71	4.3	ND		0.68	+	ND		0.68 4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.4	5.7	ND			5.5	ND	UJ 5A	1.2		ND		1.1	4.6	ND		1.2	4.9	ND		1 1	4.8	ND		1.1 4.8
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND	 	1.2	6.0	ND			5.9	ND	03 3A	1.1	5.2	ND		1.0	4.9	ND		1.1	5.3	ND		1.0	5.1	ND		1.0 5.1
1,3-Butadiene	TO-15 μg/m ³	ND		.78		ND		0.76		ND		0.67		ND		0.63	_	ND		0.68		ND		0.66	1	ND		0.66 2.3
1.3-Dichlorobenzene	TO-15 μg/m ³	ND		.84	7.4	ND		0.70		ND		0.07		ND		0.68		ND		0.74		ND		0.71	6.2	ND		0.71 6.2
1.4-Dichlorobenzene	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	.88	7.4	ND		0.85		ND		0.72	1 -	ND		0.00	6.0	ND		0.74	+	ND		0.74	1	ND		0.71 6.2
1,4-Dioxane	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	2.6	18	ND			17	ND		2.2		ND		2.1	14	ND	1	2.3	15	ND		2.2	15	ND		2.2 15
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	.67	5.7	ND		0.66		ND		0.58		ND		0.54		ND	1	0.59		5.9		0.56	_	5.9		0.56 4.8
2-Butanone (Methyl Ethyl Ketone	, ,	ND		2.2	14	ND		2.1	14	ND		1.9		ND		1.8	4.6 12	ND		1.9	13	ND		1.8	12	ND		1.8 12
2-Hexanone	TO-15 μg/m ³	ND		.48	20	ND			20	ND		0.41	1 -	ND		0.39		ND		0.42	+	ND		0.40	17	ND		0.40 17
2-Propanol	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	.90	12	ND		0.47	12	12		0.41	1 -	ND		0.39		ND		0.42	+	17		0.76	10	ND		0.76 10
3-Chloropropene	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +	3.3	15	ND		3.3	15	ND		2.9	1 -	ND		2.7	12	ND		2.9	13	ND		2.8	13	ND		2.8 13
' '			+						5.9			1	1 1			0.99		+			ł			1.0	5.1			
4-Ethyltoluene		18	+ + + + + + + + + + + + + + + + + + + +	1.2	6.0 5.0	ND				5.7		1.0	1 1	ND ND		0.99		ND		1.1	5.3	10			1	11		
4-Methyl-2-pentanone	TO-15 μg/m ³ TO-15 μg/m ³	ND		1.2	29	ND ND			4.9 28	ND		1.0 2.5	_					ND		1.0	4.4	ND ND		1.0	4.2	ND ND		1.0 4.2 2.4 24
Acetone	TO-15 μg/m ³	34		2.9			UJ 5F	1.6		ND	UJ 5F		9.6	42 ND		2.3	9.1	ND		2.5	25				24 9.4		UJ 5F	1.4 9.4
Acrolein		ND					UJ 5F			ND	UJ 5F				UJ 5F			ND		1.5		ND	UJ 5F				UJ 5F	
Acrylonitrile	TO-15 μg/m ³	ND			11			0.63		ND		0.56		ND		0.52				0.57	1	ND			8.9			0.55 8.9
alpha-Chlorotoluene	TO-15 μg/m ³	ND			6.3			0.56		ND			5.4			0.46		ND		0.50		ND			5.3		-	0.48 5.3
Benzene	TO-15 μg/m ³	ND			3.9			0.72		ND			3.4	ND		0.60		ND	1 1	0.64		3.9			3.3			0.62 3.3
Bromodichloromethane	TO-15 μg/m ³	ND	+ + + + + + + + + + + + + + + + + + + +					1.2		ND			7.0	ND		0.99		ND	1	1.1	t	ND			6.9			1.0 6.9
Bromoform	TO-15 μg/m ³	ND	1	1.3		ND			12	ND		1.1		ND		1.1	10	ND	1	1.2	11	ND		1.1	11	ND		1.1 11
Bromomethane	TO-15 μg/m ³	ND	1	2.1		ND		2.0	46	ND		1.8		ND		1.7	38	ND		1.8	42	ND		1.7	40	ND	<u> </u>	1.7 40
Carbon Disulfide	TO-15 μg/m ³	ND		1.5		ND			15	ND		1.3		ND		1.2	12	ND		1.3	13	17		1.2	13	ND		1.2 13
Carbon Tetrachloride	TO-15 μg/m ³	ND							7.5	ND			6.6			1.6	+	ND	1 1	1.8		ND		1.7	6.5		-	1.7 6.5
Chlorobenzene					5.6			0.50		ND			4.8			0.41		ND		0.45		ND			4.7	ND		0.43 4.7
Chloroethane	TO-15 μg/m ³			3.3				3.2		ND		2.8		ND		2.7	10	ND		2.9	11	ND		2.8				2.8 11
Chloroform	TO-15 μg/m ³				6.0			0.50		ND			5.1			0.41		ND		0.45		ND			5.0			0.43 5.0
Chloromethane	TO-15 μg/m ³				25			1.7		ND				ND		1.4		ND		1.6	1	ND			21			1.5 21
cis-1,2-Dichloroethene	TO-15 μg/m ³				4.8				4.7	ND			4.2			1.4					4.2				4.1			1.5 4.1
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	1	1.1	5.6	ND		1.0	5.4	ND		0.92	4.8	ND	ĺ	0.87	4.5	ND		0.94	4.8	ND		0.90	4.7	ND		0.90 4.7

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 8 of 37)

	Location ID		VW25A			VW25B				VW26A				VW26B				VW27A				VW27B		1		VW27B		—
	Sampling Date/Time	(07/13/2021 12:5	50		07/13/2021				07/09/2021 15	5:03			07/15/2021 07:4	18			07/15/2021 0	6:03			07/15/2021 0				07/15/2021 0	6:44	
	Sample Depth (feet)		5.5	, ,		14.5				5.5				14.5	. •			5.5	0.00			14.5	0			14.5	0	
	Sample Type		N			N				N				N				N				N				FD		
	Field Sample ID		SG-VW25A-02	2		SG-VW25E				SG-VW26A-				SG-VW26B-02				SG-VW27A				SG-VW27B				SG-VW27B		
	Lab Sample ID		2107282-11A			2107282-1				2107241A-2	1A			2107361-05A				2107361-02				2107361-0				2107361-04		
	Status		Validated			Validate	d			Validated				Validated				Validated				Validated	1			Validated	1	
Analyte	Method Units	Result	QA Reason M	IDL	RL F	Result QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason MI	DL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m ³	ND	0	.76	6.0	ND	0.74	5.9	ND		0.65	5.2	ND	0.0	61	4.9	ND		0.66	5.2	ND		0.64	5.1	ND		0.64	5.1
Cyclohexane	TO-15 μg/m ³	ND	0	.69	4.2	ND	0.68	4.1	ND		0.59	3.6	ND	0.9	56	3.4	ND		0.61	3.7	5.6		0.58	3.5	5.6		0.58	3.5
Dibromochloromethane	TO-15 μg/m ³	ND		1.8	10	ND	1.7	10	ND		1.5	8.9	ND	1.	.4	8.4	ND		1.6	9.1	ND		1.5	8.8	ND		1.5	8.8
Dibromomethane	TO-15 μg/m ³	ND		1.3	35	ND	1.3	34	ND		1.1	30	ND	1.	.1	28	ND		1.2	30	ND		1.1	29	ND		1.1	29
Ethanol	TO-15 μg/m ³	ND	2	2.8	23	ND	2.8	22	ND		2.4	20	31	2.	.3	19	ND		2.5	20	50		2.4	19	46		2.4	19
Ethyl Acetate	TO-15 μg/m ³	ND		1.0	18	ND	1.0	_			0.88	15	41	0.8		14	ND		0.90	15	ND		0.87	15	ND		0.87	15
Ethylbenzene	TO-15 μg/m ³	15			5.3	ND	1.4	5.2	ND		1.2	4.6	ND			4.3	ND		1.2	4.6	14		1.2	4.5	15		_	4.5
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND			20	ND	1.0					18	ND	0.0		16	ND		0.94		ND		0.91	17	ND			
Freon 11	TO-15 μg/m ³	ND			6.9	ND	1.4	6.7			1.3	5.9	ND	1.	.2	5.6	ND		1.3	6.0	ND		1.2	5.8	ND		1.2	5.8
Freon 12	TO-15 μg/m ³	8.8			6.0	20	0.93	_				5.2	ND	0.3		4.9	ND			5.3	ND		0.80	5.1	ND		0.80	_
Freon 113	TO-15 μg/m ³	ND		_	9.4	ND	1.4	9.2			1.3	8.0	ND			7.6	ND			8.2	ND		1.2	7.9	ND			7.9
Freon 114	TO-15 μg/m ³	ND			8.6	ND	1.5	8.4	ND			7.3	ND			6.9	ND		1.3	7.5	ND		1.3	7.2	ND			7.2
Freon 134a	TO-15 μg/m ³	ND			20	ND	2.5	20			2.2	18	ND		.0	16	ND		2.2	18	ND		2.1	17	ND		2.1	17
Heptane	TO-15 μg/m ³	ND			5.0	ND	1.2				1.0	4.3	ND	0.9		4.0	ND		1.0	4.4	5.4		1.0	4.2	5.5		1.0	4.2
Hexachlorobutadiene	TO-15 μg/m ³	ND		1.8	52	ND	4.7	51	ND		4.1	45	ND			42	ND		4.2	46	ND		4.0	44	ND		4.0	44
Hexachloroethane	TO-15 μg/m ³	ND		-+	47	ND	46	46			41	41	ND		_	38	ND		41	41	ND		40	40	ND		40	40
Hexane	TO-15 μg/m ³	ND		-	4.3	ND	0.77					3.7	39	0.6		3.5	8.7		0.69		180		0.66	3.6	170			1
Iodomethane	TO-15 μg/m ³	ND			71	ND	0.90	_	ND		0.79	61	ND	UJ 5A 0.1		57	ND	UJ 5A	0.81	62	ND	UJ 5A	0.78	60	ND	UJ 5A	0.78	
Isopropyl ether	TO-15 μg/m ³	ND			20	ND	0.59	_	ND		0.52	18	ND		49	16	ND		0.53		ND		0.51	17	ND		0.51	17
m- & p-Xylenes	TO-15 μg/m ³	56			5.3	ND	1.2	5.2			1.0	4.6	6.7	0.9		4.3	ND		1.1	4.6	57		1.0	4.5	58		1.0	4.5
Methyl tert-butyl ether	TO-15 μg/m ³	ND		.95	18	ND	0.92	_	ND		0.81	15	ND	0.1		14	ND		0.83	15	ND		0.80	15	ND		0.80	15
Methylene Chloride	TO-15 μg/m ³	ND		.88	42	ND	0.85				0.75	36	ND	0.7		34	ND		0.76	37	ND		0.74	36	ND		0.74	36
Naphthalene	TO-15 μg/m ³	ND		1.9	13	ND	4.8	12			4.2	11	ND		.0	10	ND		4.3	11	ND		4.2	11	ND		4.2	11
o-Xylene	TO-15 μg/m ³	19		_	5.3	ND	1.3	5.2			1.1	4.6	ND			4.3	ND		1.2	4.6	17		1.1	4.5	18		1.1	4.5
Propylbenzene	TO-15 μg/m ³	ND			6.0	ND	0.97	_				5.2	ND	0.8		4.9	ND		0.87	5.3	ND		0.84	5.1	ND		0.84	
Propylene	TO-15 μg/m ³	ND		_	8.4	ND	0.61	_				7.2	ND	0.9		6.8	ND		0.54		ND		0.52		ND		0.52	_
Styrene	TO-15 μg/m ³	ND			5.2	ND	0.66	_				4.5	ND	0.9		4.2	ND		0.59		ND		0.57		ND			
tert-Amyl methyl ether	TO-15 μg/m ³				20		2.1		ND							16			1.9		ND		1.8	17	ND		1.8	17
tert-Butyl alcohol	TO-15 μg/m ³				15		_	_	ND	1	0.88						ND			13					ND		0.86	
Tetrachloroethene	TO-15 μg/m ³				8.3				55		1.1					6.7					58				55			7.0
Tetrahydrofuran	TO-15 μg/m ³				3.6		_	3.5			0.63						ND				ND				ND		0.61	_
Toluene	TO-15 μg/m ³				4.6			4.5		1	0.41						7.0			4.0					35		0.40	
TPH - Gasoline	TO-15 μg/m ³				500				ND		430						ND				900				740			420
trans-1,2-Dichloroethene	TO-15 μg/m ³				4.8				ND	1	1.1					3.9				4.2					ND			4.1
trans-1,3-Dichloropropene	TO-15 μg/m ³				5.6			5.4			0.83		ND			4.5				4.8					ND		0.81	
Trichloroethene	TO-15 μg/m ³				6.6				ND	1	0.81		ND			5.3				5.8					ND		0.80	
Vinyl Acetate	TO-15 μg/m ³				17				ND	1	4.0		ND			14				15					ND		3.9	
Vinyl Bromide	TO-15 μg/m ³				21				ND	†	1.2		ND			17				19			_		ND		1.2	
Vinyl Chloride	TO-15 μg/m ³	ND			3.1				ND	1	0.68		ND				ND				ND		0.66				0.66	_
viriyi Ciliolide	10-15 μg/111	טא	U	.19	J. I	טאו	0.77	3.0	טא	I	0.08	۷.۱	טעו	0.0	υ4	2.3	טאו		0.09	2.1	ND		00.0	2.0	ND		0.00	∠.0

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 9 of 37)

	Location ID		VW28A				VW28B				VW29A			VW29B				VW30A				VW30I	В			VW31A	\
	Sampling Date/Time		07/15/2021 15	:31			07/15/2021				08/17/2021 09:04			07/15/2021 1	3:05			07/15/2021 08	3:17			07/15/2021				07/09/2021	
	Sample Depth (feet)		5.5				14.5				5.5			14.5				5.5				14.5				5.5	
	Sample Type		N				N				N			N				N				N				N	
	Field Sample ID		SG-VW28A-0)2			SG-VW28E	3-02			SG-VW29A-03			SG-VW29B	-02			SG-VW30A-	03			SG-VW30	B-03			SG-VW31A	∖- 02
	Lab Sample ID		2107361-12	Ą			2107362A-	12A			2108390-16A			2107362A-	11A			2107362A-0	4A			2107362A	-05A			2107241A-	18A
	Status		Validated				Validate	d			Validated			Validated	d			Validated				Validate	ed			Validate	d
Analyte	Method Units	Dogult	QA Reason N	adi I	RL	Dogult	QA Reason	MDL	RL	Result	QA Reason MDL	l Di	Docult	I OA Bassan	LMDI	Ιы	Dogult	QA Reason	МП	Гы	Dogult	IOA Bosson	LMDI	RL	Popul	t QA Reasor	Janila
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND		1.6		Result ND	UJ 4D	8.5	230	ND	QA Reason MDL	29	ND	QA Reason	1.0	28	ND	QA Reason	1.6	42	ND	UJ 4D	11	310	Resul		1.5 3
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.50	32 6.4	ND	UJ 4D	5.5	46	ND	0.46	1	ND		0.68	5.6			1.0	8.4	ND	UJ 4D	7.4	61			0.47 6.
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.75	8.0	ND	UJ 4D	4.5	58	ND	0.40	7.3	ND		0.55	7.1	ND		0.82	10	ND	UJ 4D	6.0	77	_		0.70 7.
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		1.0	6.4	ND	UJ 4D	6.2	46	ND	0.94	5.8	ND		0.33	5.6	ND		1.1	8.4	ND	UJ 4D	8.3	61	ND		0.96 6.
1.1-Dichloroethane	TO-15 μg/m ³	ND		0.99	4.7	ND	UJ 4D	4.4	34	ND	0.90	4.3	ND		0.77	4.2	ND		0.81	6.2	ND	UJ 4D	5.9	45	-		0.92 4.
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.5	4.6	ND	UJ 4D	6.9	33	ND	1.4	4.3	ND		0.86	4.1	ND		1.3	6.1	ND	UJ 4D	9.3	44	ND		1.4 4.
1.1-Difluoroethane	TO-15 μg/m ³	ND		2.8		6,300	J- 4D	17	91	ND	2.5	12	22		2.1		ND		3.2	17	9,600	J- 4D	23	120			2.6 1
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.8	13 28	ND	UJ 4D	15	200	ND	1.6	26	ND		1.9	11 25	ND		2.8	37	ND	UJ 4D	20	270			1.6 2
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		3.1	35	ND	UJ 4D	28	250	ND	2.8	32	ND		3.4	31	ND		5.1	46	ND	UJ 4D	37	330			2.9 3
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		0.66	5.8	ND	UJ 4D	15	41	8.1	0.61	_	ND		1.9	5.1	ND		2.8	7.6	ND	UJ 4D	20	55			0.62 5.
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.5	45	ND	UJ 4D	31	320	ND	1.3	41	ND		3.8	40	ND		5.7	60	ND	UJ 4D	42	430	_	+	1.4 4
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.8	9.0	ND	UJ 4D	5.4	64	ND	1.6	8.2	ND		0.67	8.0			1.0	12	ND	UJ 4D	7.2	86			1.6 8.
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.79	7.0	ND	UJ 4D	4.3	50	ND	0.72		ND		0.53		1		0.79		ND	UJ 4D	5.8	67			0.74 6.
1.2-Dichloroethane	TO-15 μg/m ³	ND		0.78	4.7	ND	UJ 4D	6.8	34	ND	0.71	4.3	ND		0.84	4.2	1		1.2	6.2	ND	UJ 4D	9.1	45			0.73 4.
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.3	5.4	ND	UJ 4D,5A	13	39	ND	1.2	4.9	ND	UJ 5A	1.6	4.8	ND	UJ 5A	2.4	7.1	ND	UJ 4D,5A	17	52		UJ 5A	1.2 5.
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.2	5.8	ND	UJ 4D	6.4	41	ND	1.1	5.3	ND	00 0/1	_	5.1	ND	00 0/1	1.2	7.6	ND	UJ 4D	8.5	55		00 0/1	1.1 5.
1,3-Butadiene	TO-15 μg/m ³	ND		0.75	2.6	ND	UJ 4D	6.1	18	ND	0.68	1 1	ND		_	2.3	1		1.1	3.4	ND	UJ 4D	8.2	25			0.70 2.
1.3-Dichlorobenzene	TO-15 μg/m ³	ND		0.80	7.0	ND	UJ 4D	6.5	50	ND	0.74		ND		0.80	6.2			1.2	9.2	ND	UJ 4D	8.6	67			0.75 6.
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.84	7.0	ND	UJ 4D	3.3	50	ND	0.76		ND		0.40	6.2			0.60		ND	UJ 4D	4.4	67	_		0.78 6.
1,4-Dioxane	TO-15 μg/m ³	ND		2.5	17	ND	UJ 4D	6.0	120	ND	2.3	15	ND		0.74	15	ND		1.1	22	ND	UJ 4D	8.0	160	-		2.3 1
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.64	5.5	ND	UJ 4D	3.0	39	ND	0.59	1 1	ND		0.37	4.8	ND		0.56		ND	UJ 4D	4.0	52	_		0.60 5.
2-Butanone (Methyl Ethyl Ketone		ND		2.1	14	ND	UJ 4D	17	99	ND	1.9	13	ND		2.2	12	ND		3.2	18	ND	UJ 4D	23	130			2.0 1
2-Hexanone	TO-15 μg/m ³	ND		0.46	19	ND	UJ 4D	12	140	ND	0.42	18	ND		1.4	17	ND		2.1	25	ND	UJ 4D	16	180			0.43 1
2-Propanol	TO-15 μg/m ³	13	 	0.86	12	ND	UJ 4D	5.5	82	19	0.79	10	13		0.68	10	ND		1.0	15	ND	UJ 4D	7.4	110			0.81 1
3-Chloropropene	TO-15 μg/m ³	ND		3.2	15	ND	UJ 4D	11	100	ND	2.9	13	ND		1.3	13	ND		2.0	19	ND	UJ 4D	14	140			3.0 1
4-Ethyltoluene	TO-15 μg/m ³	ND		1.2	5.8	ND	UJ 4D	10	41	6.9	1.1	5.3	ND		1.3	5.1	ND		1.9	7.6	ND	UJ 4D	14	55	ND		1.1 5.
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.1	4.8	ND	UJ 4D	5.2	34	ND	1.0	4.4	ND		0.64	4.2	ND		0.95		ND	UJ 4D	6.9	46			1.1 4.
Acetone	TO-15 μg/m ³	33		2.8	28	ND	UJ 4D	14	200	ND	2.5	25	37		1.8	24	37		2.6	36	ND	UJ 4D	19	270			2.6 2
Acrolein	TO-15 μg/m ³	ND	UJ 5F	1.6	11	ND	UJ 4D,5F	23	77	ND	UJ 5F 1.5	9.8	ND	UJ 5F	2.8	9.5	ND	UJ 5F	4.2	14	ND	UJ 4D,5F	31	100	ND	UJ 5F	1.5 1
Acrylonitrile	TO-15 μg/m ³	ND		0.62	10	ND	UJ 4D	6.9	73	ND	0.57		ND			9.0			1.3		ND	UJ 4D	9.2	_			0.58 9.
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.54	6.0	ND	UJ 4D	3.5	43	ND		5.5				5.4			0.64		ND	UJ 4D	4.7	58	ND		0.51 5.
Benzene	TO-15 μg/m ³	ND		0.71	3.7	ND	UJ 4D	2.0	27	ND	0.64		ND			3.3			0.37		ND	UJ 4D	2.7	36			0.66 3.
Bromodichloromethane	TO-15 μg/m ³	ND		1.2	7.8	ND	UJ 4D	11	56	ND	1.1	7.2	ND			6.9			2.0	10	ND	UJ 4D	14	75			1.1 7.
Bromoform	TO-15 μg/m ³	ND		1.3	12	ND	UJ 4D	7.5	87	ND	1.2	11	ND		_	11			1.4	16	ND	UJ 4D	10	120			1.2 1
Bromomethane	TO-15 μg/m ³	ND		2.0	45	ND	UJ 4D	15	330	ND	1.8	42	ND		1.8	40	ND		2.7	60	ND	UJ 4D	20	430			1.8 4
Carbon Disulfide	TO-15 μg/m ³	ND		1.4	14	ND	UJ 4D	24	100	ND	1.3	13	ND		3.0	13	ND		4.5	19	ND	UJ 4D	33	140	ND		1.3 1
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.9	7.4	ND	UJ 4D	8.6	53	ND	1.8	6.7	ND		1.1	6.5	ND		1.6	9.7	ND	UJ 4D	11	70	ND		1.8 6.
Chlorobenzene	TO-15 μg/m ³	ND	C	0.49	5.4	ND	UJ 4D	3.4	39	ND	0.45	4.9	ND		0.42	4.8	ND		0.62		ND	UJ 4D	4.5	52	ND		0.46 5.
Chloroethane	TO-15 μg/m ³	ND		3.2	12	ND	UJ 4D	18	89	ND	2.9		ND		2.2	11	ND		3.3		ND	UJ 4D	24	120			3.0 1
Chloroform	TO-15 μg/m ³	ND		0.49	5.7	ND	UJ 4D	4.8	41	ND	0.45		9.6			5.0	1,500		0.89		540	J- 4D	6.5	55	_		0.46 5.
Chloromethane	TO-15 μg/m ³	ND		1.7	24	ND	UJ 4D	18	170	ND	1.6	22	ND		2.3	21			3.4	32	ND	UJ 4D	24	230			1.6 2
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.7	4.6	ND	UJ 4D	6.0	33	ND	1.5	1	ND		_	4.1	1		1.1		ND	UJ 4D	8.0	44			1.6 4.
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND			5.3	ND	UJ 4D	5.5	38	ND	0.94	_	ND			4.7			1.0		ND	UJ 4D	7.4	51	ND		0.96 5.

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 10 of 37)

	Location ID		VW28A				VW28B			1	VW29A				VW29E	<u> </u>		VW30A		Ī		VW30E	1			VW31A		=
	Sampling Date/Time		07/15/2021 15:	31			07/15/2021				08/17/2021 0	9.04			07/15/2021			07/15/2021 08	R·17			07/15/2021				07/09/2021 13:	:34	
	Sample Depth (feet)		5.5				14.5	.0.00			5.5	0.0 .			14.5	10.00		5.5				14.5	00.01			5.5	.01	
	Sample Type		N				N				N				N			N				N				N		
	Field Sample ID		SG-VW28A-02	2			SG-VW28E	3-02			SG-VW29A	03			SG-VW29E	3-02		SG-VW30A-	03			SG-VW30I	3-03			SG-VW31A-0)2	
	Lab Sample ID		2107361-12A	4			2107362A-				2108390-1				2107362A-			2107362A-0	4A			2107362A-				2107241A-18	βA	
	Status		Validated				Validate	d			Validated	1			Validate	d		Validated				Validate	d			Validated		
Analyte	Method Units	Dogult	QA Reason M	4DL I	RL	Result	QA Reason	MDL	RL	Result	loa Bassan	LMDI	LDI	Dogul	t QA Reasor	Janilei	Popult	QA Reason	MDI	L	Dogult	OA Bosson	MDL	RL	Result	QA Reason N	мы І	ы
Cumene	TO-15 μg/m ³	ND).72	5.8	ND	UJ 4D	5.3	41	ND	QA Reason	0.66	_	ND	L QA Reason	0.65 5.1	ND	QA Reason	0.97	_	ND	UJ 4D	7.0	55	ND		0.68	
Cyclohexane	TO-15 μg/m ³	ND		0.66	4.0	ND	UJ 4D	6.2		ND		0.61	3.7	ND			+		1.1	5.3	ND	UJ 4D	8.3		ND		0.62	
Dibromochloromethane	TO-15 μg/m ³	ND		1.7	10	ND	UJ 4D	10	29 72	ND		1.6	9.1	ND		0.76 3.6 1.2 8.8			1.8	13	ND	UJ 4D	13	38 95	ND			9.3
Dibromomethane	TO-15 μg/m ³	ND	 	1.7	33	ND	UJ 4D		240	ND		1.2	30	ND			ND		2.1	44	ND	UJ 4D	15		ND	 		31
Ethanol	TO-15 μg/m ³	ND					UJ 4D	12 17		25				ND		1.4 29	ND			1 1	ND	UJ 4D		320				
	TO-15 μg/m ³		t	2.7	22 17	ND ND	UJ 4D	35	160	ND		2.5	20	ND ND	+	2.1 20	ND		3.2	29		UJ 4D	23 46	210	ND ND			21
Ethyl Acetate		ND		0.99			UJ 4D	6.1	120	5.7		0.90	15			4.3 15	ND		6.3	22	ND	UJ 4D		160				16 4.8
Ethylbenzene Ethyl tert butyl ether	, ,	ND	t	1.3	5.1	ND	UJ 4D		36	5 .7		0.94	4.6	ND ND		0.75 4.5 1.3 17	ND		1.1	6.7	ND	UJ 4D	8.1 14	49	ND			
Ethyl-tert-butyl ether Freon 11		ND	 	1.0	20	ND	UJ 4D	10	140			1.3	18		+				1.9	26	ND			190	ND		0.96	6.2
Freon 11		ND		1.4).91	6.6	ND	UJ 4D	5.4	47	ND		0.84	6.0	ND	+	0.67 5.8 0.92 5.1	ND 11		0.99	8.6	ND	UJ 4D UJ 4D	7.2	63	ND ND		1.3 (0.86 s	
Freon 12 Freon 113			t		5.8	ND	UJ 4D	7.5	42	5.7 ND			5.3	13 ND	+				1.4	7.6	ND		10 14	55	ND		1.3	
	· • · • · • · • · • · • · · • · · • · · • ·	ND	t	1.4	9.0	ND		10	64			1.3	8.2			1.2 7.9			1.8	12	ND	UJ 4D		86				
Freon 114	TO-15 μg/m ³	ND	t	1.4	8.2	ND	UJ 4D	8.1	59	ND		1.3	7.5	ND		1.0 7.2			1.5	11	ND	UJ 4D	11	78	ND		1.4	
Freon 134a	TO-15 μg/m ³	ND		2.4	20	ND	UJ 4D	19	140	ND		2.2	18	ND		2.3 17	ND		3.5	26	ND	UJ 4D	25	190	ND		2.2	
Heptane	TO-15 μg/m ³	ND	 	1.1	4.8	ND	UJ 4D	6.2	34	ND		1.0	4.4	ND		0.76 4.2			1.1	6.3	ND	UJ 4D	8.2	46	ND			4.5
Hexachlorobutadiene	TO-15 μg/m ³	ND	 	4.6	50	ND	UJ 4D	40	360	ND		4.2	46	ND		4.9 44	ND		7.3	66	ND	UJ 4D	53	480	ND	+		47
Hexachloroethane	TO-15 μg/m ³	ND	t	45	45	ND	UJ 4D	320	320	ND		41	41	ND		40 40	ND		60	60	ND	UJ 4D	430	430	ND	+		42
Hexane	TO-15 μg/m ³	4.7).75	4.1	ND	UJ 4D	5.5	30	240		0.69	3.8	ND		0.68 3.6			1.0	5.4	ND	UJ 4D	7.3	39	ND		0.70	
Iodomethane	TO-15 μg/m ³	ND		0.88	68	ND	UJ 4D	27	490	ND	UJ 5A	0.81	62	ND		3.3 60	ND		4.9	89	ND	UJ 4D	36	650	ND		0.83	
Isopropyl ether	TO-15 μg/m ³	ND).58	20	ND	UJ 4D	9.4	140	ND		0.53	18	ND		1.2 17	ND		1.7	26	ND	UJ 4D	12	190	ND		0.54	
m- & p-Xylenes	TO-15 μg/m ³	ND	t	1.2	5.1	ND	UJ 4D	20	36	21		1.1	4.6	ND		2.4 4.5			3.6	6.7	ND	UJ 4D	26	49	ND			4.8
Methyl <i>tert</i> -butyl ether	TO-15 μg/m ³	ND		0.90	17	ND	UJ 4D	7.4	120	ND		0.83	15	ND		0.91 15	ND		1.4	22	ND	UJ 4D	9.9	160	ND		0.85	
Methylene Chloride	TO-15 μg/m ³	ND		0.84	41	ND	UJ 4D	16	290	ND		0.76	37	ND		2.0 36	ND		3.0	54	ND	UJ 4D	22	390	ND		0.78	
Naphthalene	TO-15 μg/m ³	ND	 	4.7	12	ND	UJ 4D	5.7	88	ND		4.3	11	ND		0.71 11	ND		1.0	16	ND	UJ 4D	7.6	120	ND			11
o-Xylene	TO-15 μg/m ³	ND	t	1.3	5.1	ND	UJ 4D	9.8	36	7.8		1.2	4.6	ND		1.2 4.5	ND		1.8	6.7	ND	UJ 4D	13	49	ND			4.8
Propylbenzene	TO-15 μg/m ³	ND).95	5.8	ND	UJ 4D	2.3	41	ND		0.87	5.3	ND		0.28 5.1	ND		0.42	7.6	ND	UJ 4D	3.1	55	ND		0.89	
Propylene	TO-15 μg/m ³	ND		0.60	8.0	ND	UJ 4D	11	58	ND		0.54	7.4	ND		1.3 7.1	ND		2.0	11	ND	UJ 4D	14	77	ND			7.5
Styrene	TO-15 μg/m ³	ND		0.65	5.0	ND	UJ 4D	4.2	36	ND		0.59	4.6	ND		0.51 4.4	ND		0.76	1	ND	UJ 4D	5.6	48	ND		0.60	
tert-Amyl methyl ether	TO-15 μg/m ³			2.0	20	ND	UJ 4D	20	140	ND		1.9	18	ND		2.5 17	ND		3.7	26	ND	UJ 4D	27	190	ND			18
tert-Butyl alcohol	TO-15 μg/m ³	ND		0.98	14	ND	UJ 4D	9.3	100	ND		0.90		ND		1.1 12			1.7	19	ND	UJ 4D	12	140	ND		0.92	
Tetrachloroethene	TO-15 μg/m ³			_		110	J- 4D	10	57	140			7.2	380		1.2 7.0	_		1.8	10	240	J- 4D	13	76	170		1.2	
Tetrahydrofuran	TO-15 μg/m ³			0.70		ND	UJ 4D	5.4	25	ND			3.2	ND		0.66 3.0			0.98		ND	UJ 4D	7.1	33	ND		0.65	
Toluene	TO-15 μg/m ³).45		ND	UJ 4D	7.6	32	13			4.0	4.9			ND		1.4	5.8	ND	UJ 4D	10	42	ND		0.42	
TPH - Gasoline	TO-15 μg/m ³				480	ND	UJ 4D		3,400				440	ND		420 420			630		ND	UJ 4D	4,600	4,600			450 4	
trans-1,2-Dichloroethene	TO-15 μg/m ³		t	1.2	4.6	ND	UJ 4D	14	33	ND			4.2	ND		1.7 4.1				6.1	ND	UJ 4D	18	44	ND		1.1	
trans-1,3-Dichloropropene	TO-15 μg/m ³				5.3	ND	UJ 4D	5.2	38	ND		0.84		ND		0.65 4.7	-			7.0	ND	UJ 4D	7.0	51	ND		0.86	
Trichloroethene	TO-15 μg/m ³	ND).91	6.3	ND	UJ 4D	5.7	45	ND			5.8	ND		0.70 5.6			1.0	8.3	ND	UJ 4D	7.6	60	ND		0.85	
Vinyl Acetate	TO-15 μg/m ³	ND		4.4	16	ND	UJ 4D	23	120	ND		4.1		ND		2.9 14			4.3	22	ND	UJ 4D	31	160	ND		4.2	
Vinyl Bromide	TO-15 μg/m ³			1.4	20	ND	UJ 4D	12	150	ND			19	ND		1.5 18			2.2	27	ND	UJ 4D	16	200	ND		1.3	
Vinyl Chloride	TO-15 μg/m ³	ND	0).76	3.0	ND	UJ 4D	8.5	21	ND		0.69	2.7	ND		1.0 2.6	ND		1.6	3.9	ND	UJ 4D	11	29	ND	<u> </u>	0.71	2.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 11 of 37)

	Location ID		VW31B				VW32A				VW32B				VW33A		VW33B			VW34A				VW34A	
	Sampling Date/Time	(07/09/2021 14	:06			07/12/2021 1	1:26			07/12/2021 1			(07/14/2021 12:18		07/14/2021 12:41		0	7/14/2021 13	:30			07/14/2021 1	3:30
	Sample Depth (feet)		14.5				5.5				14.5				5.5		14.5			5.5				5.5	
	Sample Type		N				N				N				N		N			N				FD	
	Field Sample ID		SG-VW31B-0)3			SG-VW32A	-03			SG-VW32B	3-02			SG-VW33A-02		SG-VW33B-02			SG-VW34A-0)2			SG-VW34A	-03
	Lab Sample ID		2107241A-20	lΑ			2107260A-0				2107260A-0				2107284-11A		2107284-12A			2107284-13	4			2107284-14	
	Status		Validated				Validated	1			Validated	d			Validated		Validated			Validated				Validated	
Analyte	Method Units	Result	QA Reason	MDI	l RI	Result	QA Reason	Імпі	l RI	Result	QA Reason	Імы	RI	Result	QA Reason MDL RL	Result	OA Reason MDI	l _{RI}	Result	QA Reason	мы І	RI R	Result	QA Reason	IMDLI RI
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND		1.6	_	ND	Q/ C Troubbill	1.4	39	ND	UJ 4D		30	ND	1.3 35		1.3	_	ND	2.1 11000011			ND	α, ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι	1.2 32
1.1.1-Trichloroethane	TO-15 μg/m ³	ND		0.48		ND		0.95		ND	UJ 4D	0.72		ND	0.84 6.9		0.82		ND		0.74		ND		0.76 6.3
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.72		ND		0.77		ND	UJ 4D	0.58	7.4	ND	0.68 8.7		0.67		ND				ND		0.62 8.0
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.98		ND		1.1	7.8	ND	UJ 4D		5.9	ND	0.94 6.9		0.93	+	ND			6.2	ND		0.86 6.3
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.95	4.6	ND		0.76	5.8	ND	UJ 4D	0.57	4.4	ND	0.67 5.1	ND	0.66	5.0	ND		0.60	4.6	ND		0.61 4.7
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.5	4.5	ND		1.2	5.7	ND	UJ 4D	0.90	4.3	ND	1.0 5.0) ND	1.0	5.0	ND		0.93	4.5	ND		0.96 4.6
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.7	12	ND		2.9	16	140	J- 4D	2.2	12	ND	2.6 14	ND	2.6	14	ND		2.3	12	ND		2.4 12
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.7	27	ND		2.6	35	ND	UJ 4D	2.0	26	ND	2.3 31	ND	2.3		ND			27	ND		2.1 28
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.9	33	ND		4.8	43	ND	UJ 4D	3.6	32	ND	4.2 38	ND	4.2	37	ND		3.8	34	ND		3.9 34
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		0.64	5.5	ND		2.6	7.0	66	J- 4D	2.0	5.3	ND	2.3 6.2	ND	2.3	6.1	ND		2.0	5.6	ND		2.1 5.7
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.4	43	ND		5.3	55	ND	UJ 4D	4.0	42	ND	4.7 49	ND	4.6	48	ND		4.2	44	ND		4.3 45
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.7	8.6	ND		0.93	11	ND	UJ 4D	0.70	8.3	ND	0.82 9.8	ND	0.81	9.6	ND		0.73	8.7	ND		0.75 8.9
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.76	6.8	ND		0.74	8.6	ND	UJ 4D	0.56	6.5	ND	0.65 7.6	ND ND	0.64	7.5	ND		0.58	6.8	ND		0.60 7.0
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.75	4.6	ND		1.2	5.8	ND	UJ 4D	0.88	4.4	ND	1.0 5.1	ND	1.0	5.0	ND		0.92	4.6	ND		0.94 4.7
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 5A	1.2	5.2	ND	UJ 5A	2.2	6.6	ND	UJ 4D,5A	1.7	5.0	ND	UJ 5A 2.0 5.9	ND	UJ 5A 1.9	5.8	ND	UJ 5A	1.8	5.2	ND	UJ 5A	1.8 5.4
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.2	5.5	ND		1.1	7.0	29	J- 4D	0.83	5.3	ND	0.97 6.2	ND	0.95	6.1	ND		0.86	5.6	ND		0.88 5.7
1,3-Butadiene	TO-15 μg/m ³	ND		0.72		ND		1.0	3.2	ND	UJ 4D		2.4	ND	0.93 2.8	ND	0.91	2.8	ND			2.5	ND		0.85 2.6
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.77	6.8	ND		1.1	8.6	ND	UJ 4D	0.83	6.5	ND	0.98 7.6	ND ND	0.96	7.5	ND		0.87	6.8	ND		0.89 7.0
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.80	6.8	ND		0.56	8.6	ND	UJ 4D	0.42	6.5	ND	0.49 7.6	S ND	0.49	7.5	ND		0.44	6.8	ND		0.45 7.0
1,4-Dioxane	TO-15 μg/m ³	ND		2.4	16	ND		1.0	21	ND	UJ 4D	0.77	16	ND	0.91 18		0.89	18	ND			16	ND		0.83 17
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.62	5.2	ND		0.52	6.7	20	J- 4D		5.1	ND	0.46 5.9) ND	0.45	5.8	ND			5.3	ND		0.42 5.4
2-Butanone (Methyl Ethyl Ketone	, , , ,	ND		2.0	13	ND		3.0	17	ND	UJ 4D	2.2	13	ND	2.6 15		2.6		ND		2.3	13	ND		2.4 14
2-Hexanone	TO-15 μg/m ³	ND		0.44	18	ND		2.0	24	ND	UJ 4D	1.5	18	ND	1.8 21		1.7	-	ND				ND		1.6 19
2-Propanol	TO-15 μg/m ³	46		0.83		ND		0.95	14	18	J- 4D	0.72	11	ND	0.84 12		0.82	-	ND		0.74		ND		0.76 11
3-Chloropropene	TO-15 μg/m ³	ND		3.1	14	ND		1.8	18	ND	UJ 4D	1.4	14	ND	1.6 16		1.6		ND		1.4		ND		1.5 14
4-Ethyltoluene	TO-15 μg/m ³	ND		1.1	5.5	ND		1.8	7.0	80	J- 4D	1.4	5.3	ND	1.6 6.2		1.6		ND				ND		1.4 5.7
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.1	4.6	ND		0.88	5.9	ND	UJ 4D		4.4	ND	0.78 5.2	_	0.77		ND				ND		0.71 4.8
Acetone	TO-15 μg/m ³	72		2.6		ND		2.4	34	50	J- 4D	1.8	26	35	2.2 30		2.1		ND	==			ND	==	2.0 28
Acrolein	TO-15 μg/m ³	ND		1.5		ND	UJ 5F	4.0	13	ND	UJ 4D,5F			ND	UJ 5F 3.5 12		UJ 5F 3.4			UJ 5F	3.1		ND	UJ 5F	3.2 11
Acrylonitrile	TO-15 μg/m ³	ND			9.8			1.2		ND	UJ 4D	0.89			1.0 11	-	1.0				0.93	_			0.95 10
alpha-Chlorotoluene		ND			5.8				7.4	ND	UJ 4D	0.45			0.53 6.6				ND		0.47				0.48 6.0
Benzene	TO-15 μg/m ³	ND		0.68					4.6	22	J- 4D	0.26			0.30 4.0			4.0			0.27				0.28 3.7 1.5 7.8
Bromodichloromethane Bromoform	TO-15 μg/m ³ TO-15 μg/m ³	ND		1.1	7.5					ND	UJ 4D		7.3		1.6 8.5		1.6				1.4	12			1 1
Bromomethane	TO-15 μg/m ³	ND ND		1.2	12 44	ND ND		1.3	15 56	ND	UJ 4D UJ 4D	0.97	11 42	ND ND	1.1 13 2.2 49		2.2	-	ND ND				ND		1.0 12 2.0 45
Carbon Disulfide	TO-15 μg/m ³	ND			14	ND		2.5	56	ND ND	UJ 4D	1.9	14				3.6	_					ND		3.4 14
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.4	7.1	ND		4.2 1.5	9.0	ND	UJ 4D	3.2 1.1	6.8	21 ND	3.7 16 1.3 8.0			7.9					ND		1.2 7.3
Chlorobenzene	TO-15 μg/m ³	ND ND		0.47	-	ND			6.6	ND	UJ 4D	1	5.0	ND	0.51 5.8			5.8			0.45		ND		0.47 5.3
Chloroethane	TO-15 μg/m ³	ND		3.0		ND		3.0	15	ND	UJ 4D		11	ND	2.7 13		2.6		ND				ND		2.5 12
Chloroform	TO-15 μg/m ³	ND		0.47				0.83		ND	UJ 4D		5.3	ND	0.73 6.2			6.1	ND		0.65		ND		0.67 5.7
Chloromethane	TO-15 μg/m ³	ND		1.6		ND		3.1	30	ND	UJ 4D		22	ND	2.8 26			26			2.5		ND		2.5 24
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.6					5.7	ND	UJ 4D	0.78		ND	0.91 5.0			5.0			0.81		ND		0.83 4.6
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND			5.1	ND			6.5	ND	UJ 4D	0.70		ND	0.84 5.8			5.7			0.75		ND		0.63 4.0
cia - 1,a-Dictilotoproperie	10-15 μg/m	טעו		U.99	5.1	טא		0.95	0.5	טא	UJ 4D	0.72	4.9	טא	0.84 5.8	טוו ו	0.82	5.7	טא		U./5	ວ. I	טעו		0.77 5.3

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 12 of 37)

	Location ID	VW31B				VW32A			1	VW3	32B			VW33A				VW33B				VW34A				VW34A		—
	Sampling Date/Time	07/09/2021				07/12/2021 1 ⁻	1:26			07/12/202				07/14/2021 1				07/14/2021 12:	:41		0	07/14/2021 1				07/14/2021 1	3:30	
	Sample Depth (feet)	14.5				5.5				14.	.5			5.5				14.5				5.5				5.5		
	Sample Type	N				N				Ν				N				N				N				FD		
	Field Sample ID	SG-VW31E				SG-VW32A-	03			SG-VW3	32B-02			SG-VW33A	\-02			SG-VW33B-0				SG-VW34A	-02			SG-VW34A-	-03	
	Lab Sample ID	2107241A-				2107260A-0	2A			2107260				2107284-1				2107284-12	4			2107284-1				2107284-14		
	Status	Validated	d			Validated				Valida	ated			Validated	d			Validated				Validated	1			Validated		
Analyte	Method Units I	Result QA Reasor	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Rea	son MDL	RL	Result	QA Reason	n MDL	RL	Result	QA Reason I	MDL	RL Re	esult	QA Reason	MDL	RL	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m ³	ND	0.70	5.5	ND		0.90	7.0	ND	UJ 4D	0.68	5.3	ND		0.80	6.2	ND		0.78	6.1	ND		0.71	5.6	ND		0.73	5.7
Cyclohexane	TO-15 μg/m ³	ND	0.64	3.9	ND		1.1	4.9	7.7	J- 4D	0.80	3.7	ND		0.94	4.4	ND	(0.92	4.3	ND		0.83	3.9	ND		0.86	4.0
Dibromochloromethane	TO-15 μg/m ³	ND	1.6		ND		1.7	12	ND	UJ 4D	1.3	9.2	ND		1.5	11	ND			11	ND		1.3	9.6	ND		1.4	9.9
Dibromomethane	TO-15 μg/m ³	ND	1.2	1 1	ND		2.0	41	ND	UJ 4D	1.5	31	ND		1.8	36	ND			36	ND		1.6	32	ND		1.6	33
Ethanol	TO-15 μg/m ³	ND	2.6	_	ND		2.9	27	ND	UJ 4D	2.2	20	ND	UJ 2A-	2.6			1			ND	UJ 2A-	2.3	21	ND		2.4	22
Ethyl Acetate	TO-15 μg/m ³	ND	0.95	1 1	ND		5.9	21	ND	UJ 4D	4.5		ND		5.2			+			ND		4.6	16	ND		4.8	17
Ethylbenzene	TO-15 μg/m ³	ND	1.3		ND		1.0	6.2	65	J- 4D	0.79		ND		_	5.5	1				ND		0.82		ND			5.0
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND	0.99		ND		1.8	24	ND	UJ 4D	1.4	18	ND				ND				ND		1.4	19	ND		1.4	19
Freon 11	TO-15 μg/m ³	ND	1.4		ND		0.92		ND	UJ 4D	0.70		ND		0.82		ND		0.81		ND		0.73		ND		0.75	
Freon 12	TO-15 μg/m ³	ND	0.88	1 1	ND			7.1	ND	UJ 4D	0.97	5.4	ND			6.3	+				ND		1.0	5.6	ND	1		5.7
Freon 113	TO-15 μg/m ³	ND	1.4	8.6	ND		1.7	11	ND	UJ 4D	1.3	8.3	ND		1.5	9.7	1				ND		1.4	8.7	ND	1		8.9
Freon 114	TO-15 μg/m ³	ND	1.4	7.9	ND		1.4	10	ND	UJ 4D	1.0	7.6	ND		1.2	1	1				ND		1.1	7.9	ND			8.1
Freon 134a	TO-15 μg/m ³	ND	2.3	19	ND		3.2	24	ND	UJ 4D	2.4	18	ND		2.9	21	1				ND		2.5	19	ND		2.6	19
Heptane	TO-15 μg/m ³	ND	1.1	4.6	ND		1.0	5.9	16	J- 4D	0.79	4.4	ND		_						ND		0.83	4.6	ND			4.8
Hexachlorobutadiene	TO-15 μg/m ³	ND	4.4	48	ND		6.8	61	ND	UJ 4D	5.1	46	ND		6.0		ND				ND		5.3	48	ND	1	5.5	49
Hexachloroethane	TO-15 μg/m ³	ND	44	44	ND		56	56	ND	UJ 4D	42	42	ND		49	49	1				ND		44	44	ND	1	45	45
Hexane	TO-15 μg/m ³	ND	0.72	1 1	16		0.94	5.0	19	J- 4D	0.71	3.8	ND		0.83			1			ND		0.74	4.0	ND	1	_	4.1
Iodomethane	TO-15 μg/m ³	ND	0.85	1 1	ND		4.6	83	ND	UJ 4D	3.4	63	ND		4.0	74	ND				ND		3.6	66	ND	1	3.7	67
Isopropyl ether	TO-15 μg/m ³	ND	0.55	1 1	ND		1.6	24	ND	UJ 4D	1.2	18	ND		1.4	21	ND				ND		1.3	19	ND	1	1.3	19
m- & p-Xylenes	TO-15 μg/m ³	ND	1.1	4.9	ND		3.4	6.2	200	J- 4D	2.6	4.7	ND		3.0	5.5			3.0		ND		2.7	4.9	ND	+	2.8	5.0
Methyl <i>tert</i> -butyl ether	TO-15 μg/m ³	ND	0.87	-	ND		1.3	21	ND	UJ 4D	0.96	16	ND		1.1	18	ND				ND		1.0	16	ND		1.0	17
Methylene Chloride	TO-15 μg/m ³	ND	0.80	_	ND		2.8	50	ND	UJ 4D	2.1	38	ND		2.5	44	ND	1			ND		2.2	39	ND	+	2.3	40
Naphthalene	TO-15 μg/m ³	ND	4.5	12	ND		0.98	15	ND	UJ 4D	0.74	11	ND	UJ 5B-	0.87						ND	UJ 5B-	0.77	12	ND	+	0.79	12
o-Xylene	TO-15 μg/m ³	ND	1.2	1 1	ND		1.7	6.2	64	J- 4D	1.2	4.7	ND	00 00	1.5		+	+			ND	30 00	1.3	4.9	ND	1		5.0
Propylbenzene	TO-15 μg/m ³	ND	0.92		ND		0.39	7.0	17	J- 4D	0.30		ND			6.2		+			ND		0.31	5.6	ND			5.7
Propylene	TO-15 μg/m ³	ND	0.57	1 1	ND		1.9	9.9	ND	UJ 4D	1.4	7.5	ND			8.7		+			ND		+	7.8	ND			8.0
Styrene	TO-15 μg/m ³	ND	0.62		ND		0.71	6.1	ND	UJ 4D	0.54		ND			5.4			0.62		ND		0.56		ND			
tert-Amyl methyl ether	TO-15 μg/m ³		2.0		ND		3.5		ND	UJ 4D	2.6		ND		3.1						ND				ND		2.8	
tert-Butyl alcohol	TO-15 μg/m ³			14				17	ND	UJ 4D			ND			15				15					ND		13	14
Tetrachloroethene	TO-15 μg/m ³		_		130			9.7	60	J- 4D	1.2	7 /	15				57			8.5					21	1		7.9
Tetrahydrofuran	TO-15 μg/m ³			3.3				4.2	ND	UJ 4D			ND			3.7				3.7					ND	1	0.74	
Toluene	TO-15 μg/m ³				ND			5.4	51	J- 4D			7.5			4.8				4.7					ND		1 0	4.4
TPH - Gasoline	TO-15 μg/m ³				ND				4,500				ND			520				510			460	460	ND	1	470	
trans-1,2-Dichloroethene	TO-15 μg/m ³		_	_	ND			5.7	4,300 ND	UJ 4D			ND			5.0				5.0					ND	1		4.6
trans-1,3-Dichloropropene	TO-15 μg/m ³				ND			6.5	ND	UJ 4D			ND		-	5.8				5.7					ND	+	0.72	
Trichloroethene	TO-15 μg/m ³				ND			7.7		+					-	6.8				6.7			_			+	0.72	
			_	_					ND	UJ 4D			ND												ND	+		
Vinyl Acetate	TO-15 μg/m ³		_	16				20	ND	UJ 4D			ND			18				18					ND		3.2	
Vinyl Bromide	TO-15 μg/m ³			20				25	ND	UJ 4D			ND			22				22					ND	1	1.6	
Vinyl Chloride	TO-15 μg/m³	ND	0.73	2.9	ND		1.4	3.7	ND	UJ 4D	1.1	2.8	ND	<u> </u>	1.3	3.2	ND		1.3	3.2	ND		1.1	2.9	ND		1.2	3.0

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 13 of 37)

	Location ID		VW34B				VW35A				VW35B				VW36A				VW36B		1		VW36B			Ī	VW37A		—
	Sampling Date/Time	(07/14/2021 14	4:11			08/16/2021 09:	:01			07/09/2021 1	2:17			07/12/2021 1				07/12/2021 12	2:18			07/12/2021 1:	2:18			07/13/2021		
	Sample Depth (feet)	•	14.5				5.5				14.5				5.5				14.5				14.5				5.5		
	Sample Type		N				N				N				N				N				FD				N		
	Field Sample ID		SG-VW34B-	02			SG-VW35A-0)3			SG-VW35B-	-02			SG-VW36A	N-02			SG-VW36B-	02			SG-VW36B-	03			SG-VW37A	١-02	
	Lab Sample ID		2107284-15				2108390-01	Ą			2107241A-2	23A			2107260A-0				2107260A-03	3A			2107260A-0				2107260A-		
	Status		Validated				Validated				Validated	1			Validated	d			Validated				Validated				Validate	<u>d</u>	
Analyte	Method Units	Result	QA Reason	MDI	l RI	Result	QA Reason	мы	RI	Result	QA Reason	Імпі	I RI	Result	I QA Reason	Тмы	l _{RI}	Result	QA Reason	мы	l RI	Result	QA Reason	MDI	RI	Result	QA Reasor	1 Імпі	l _{RI}
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	Q, r, r, todoon	1.2		ND		1.4	29	ND	UJ 4D	1.5	30	ND	<u> </u>	1.2		ND	<u> </u>	1.2		ND	Q, t , todoo	1.2	32	ND	Q/ 1 1100000	_	28
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.79				0.45	5.7	ND	UJ 4D	1	6.0	ND		0.75	+	ND		0.77		ND		0.77	6.4	ND		_	5.6
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.64	8.2	ND		0.68	7.2	ND	UJ 4D	0.71		ND		0.61		ND		0.63		ND		0.63	8.0	ND		_	7.1
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.89	6.5	ND		0.92	5.7	ND	UJ 4D		6.0	ND		0.85	+	ND		0.87	1	ND		0.87	6.4	ND		0.77	
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.63	4.8	ND		0.89	4.2	ND	UJ 4D	0.93		ND		0.60	4.6	ND		0.62	4.7	ND		0.62	4.7	ND		0.54	4.2
1,1-Dichloroethene	TO-15 μg/m ³	ND		0.99	4.8	ND		1.4	4.2	ND	UJ 4D	1.4	4.4	ND		0.94	4.5	ND		0.97	4.6	ND		0.97	4.6	ND		0.85	4.1
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.4	13	ND		2.5	11	50	J- 4D	2.6	12	ND		2.3	12	ND		2.4	13	ND		2.4	13	ND		2.1	11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		2.2	29	ND		1.6	25	ND	UJ 4D	1.7	26	ND		2.1	27	ND		2.2	28	ND		2.2	28	ND		1.9	
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		4.0	36	ND		2.7	31	ND	UJ 4D	2.9	33	ND		3.8	34	ND		3.9	35	ND		3.9	35	ND			30
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		2.2	5.9	7.0		0.60	5.2	ND	UJ 4D	0.62	5.4	ND		2.1	5.6	ND		2.1	5.8	ND		2.1	5.8	30		1.9	5.1
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		4.4	46	ND		1.3	40	ND	UJ 4D	1.4	42	ND		4.2	44	ND		4.3	45	ND		4.3	45	ND			40
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		0.78	9.2	ND		1.6	8.1	ND	UJ 4D	1.6	8.4	ND		0.74	8.8	ND		0.76	9.0	ND		0.76	9.0	ND			7.9
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.62	7.2	ND		0.71	6.3	ND	UJ 4D	0.75	6.6	ND		0.59	6.8	ND		0.60	7.0	ND		0.60	7.0	ND			6.2
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.98	4.8	ND		0.70	4.2	ND	UJ 4D	0.73	4.4	ND		0.93	4.6	ND		0.95	4.7	ND		0.95	4.7	ND		0.84	4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 5A	1.9	5.5	ND		1.2	4.8	ND	UJ 4D	1.2	5.1	ND	UJ 5A	1.8	5.3	ND	UJ 5A	1.8	5.4	ND	UJ 5A	1.8	5.4	ND	UJ 5A		_
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		0.92	5.9	ND		1.1	5.2	ND	UJ 4D	1.1	5.4	ND		0.87	5.6	ND		0.89	5.8	ND		0.89	5.8	12		0.79	5.1
1,3-Butadiene	TO-15 μg/m ³	ND		0.88		ND		0.67	2.3	ND	UJ 4D	0.70		ND		0.83	2.5	ND		0.85	2.6	ND		0.85	2.6	ND		0.75	
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.92	7.2	ND		0.72	6.3	ND	UJ 4D	_	6.6	ND		0.88	6.8	ND		0.90	7.0	ND		0.90	7.0	ND		0.79	
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.47	7.2	ND		0.75	6.3	ND	UJ 4D	1	6.6	ND		0.44	6.8	ND		0.46		ND		0.46	7.0	ND		_	6.2
1,4-Dioxane	TO-15 μg/m ³	ND		0.86	17	ND		2.2	15	ND	UJ 4D	2.3		ND		0.81	16	ND		0.84		ND		0.84	17	ND		0.74	
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.43	5.6	ND		0.58	4.9	ND	UJ 4D		5.1	ND		0.41	5.3	ND		0.42	5.5	ND		0.42	5.5	73			4.8
2-Butanone (Methyl Ethyl Ketone	, · · · · ·	ND		2.5	14	ND		1.9	12	ND	UJ 4D	2.0		ND		2.4	13	ND		2.4	14	ND		2.4	14	ND		2.1	12
2-Hexanone	TO-15 μg/m ³	ND		1.7	20	ND		0.41	17	ND	UJ 4D	0.43		ND		1.6	19	ND		1.6	19	ND		1.6	19	ND		1.4	17
2-Propanol	TO-15 μg/m ³	ND		0.79	12	ND		0.77	10	15	J- 4D	0.81		ND		0.75		20		0.77	12	17		0.77	12	ND		_	10
3-Chloropropene	TO-15 μg/m ³	ND		1.5	15	ND		2.9	13	ND	UJ 4D	3.0	14	ND		1.4	14	ND		1.5	15	ND		1.5	15	ND		1.3	13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.5	5.9	ND		1.0	5.2	ND	UJ 4D	1.1	5.4	ND		1.4	5.6	ND		1.5	5.8	ND		1.5	5.8	43		_	5.1
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		0.74		5.1		1.0	4.3	ND	UJ 4D	1.1	4.5	ND		0.70		ND		0.72		ND		0.72	4.8	ND			4.2
Acetone	TO-15 μg/m ³	ND		2.0		ND	111.55	2.5	25	60	J- 4D	2.6	_	27		1.9	ļ-'-	56		2.0		ND		2.0	28	ND		1.8	
Acrolein	TO-15 μg/m ³	ND	UJ 5F	3.3		ND	UJ 5F		9.6		UJ 4D,5F	1.5		ND	UJ 5F	3.1			UJ 5F	3.2		ND	UJ 5F	3.2	11	ND	UJ 5F	_	9.4
Acrylonitrile	TO-15 μg/m ³	ND		0.99		ND		0.56		ND	UJ 4D		9.5	ND	1	0.94				0.96		ND		0.96				_	8.9
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.50		ND		0.49		ND	UJ 4D		5.7	ND		0.48										ND			5.3
Benzene Bromodichloromethane	TO-15 μg/m ³ TO-15 μg/m ³	ND		0.29				0.63		ND	UJ 4D		3.5	ND		0.27				0.28		ND ND				12 ND			3.3 6.9
Bromodicnioromethane	TO-15 μg/m ³	ND		1.5	1		+		7.0	ND ND	UJ 4D	1	7.4	ND		1.5		ND ND			7.8	ND ND			7.8			_	6.9
Bromomethane	TO-15 μg/m ³	ND ND		1.1 2.1	12 47	ND ND		1.1	11	ND	UJ 4D UJ 4D	1.2		ND ND		2.0	+	ND		1.0 2.0		ND		2.0	12 45				40
Carbon Disulfide	TO-15 μg/m ³			3.5			+	1.8	13	ND	UJ 4D	1.8		37		3.3		ND		3.4		ND		3.4	14	ND		_	13
Carbon Distillide Carbon Tetrachloride	TO-15 μg/m ³	ND ND		1.2				1.7		ND	UJ 4D			ND		1.2						ND ND		1.2					6.5
Chlorobenzene	TO-15 μg/m ³	ND		0.48	_			0.44		ND	UJ 4D	1.8	5 5.1	ND ND		0.46	+			0.47		ND		0.47	7.4 5.4			_	4.7
Chloroethane	TO-15 μg/m ³	ND		2.6	_	ND		2.8		ND	UJ 4D	3.0		ND		2.4				2.5		ND		2.5	12			_	11
Chloroform	TO-15 μg/m ³	ND		0.69	_					23	J- 4D	+	5 5.4	ND		0.66	+			0.68		ND		0.68				_	5.0
Chloromethane	TO-15 μg/m ³	ND		2.6	_			1.5		ND	UJ 4D	1	23	ND		2.5				2.6		ND		2.6	24			_	21
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		0.86			 	1.5		ND	UJ 4D	1.6		ND		0.82				0.84		ND ND		0.84				0.74	
cis-1,3-Dichloropropene	TO-15 μg/m ³			0.86				0.92		ND	UJ 4D		5.0	ND ND			5.2			0.84		ND							4.1
c/s - 1,3-Dichioroproperie	10-15 μg/m ³	ND		0.79	5.4	ND		0.92	4.8	ИD	UJ 4D	0.96	5.0	ИD		0.75	5.2	ND		0.77	5.3	ΝD		0.77	5.3	טא		0.68	4./

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 14 of 37)

	Location ID		VW34B		1		VW35A		T		VW3	5B		T	VW3	6A			VW36B				VW36B			I	VW37A		
	Sampling Date/Time	0	7/14/2021 14	:11		(08/16/2021 09:	01		(07/09/202		,		07/12/202			1	07/12/2021 12:	18		(07/12/2021 12	18			07/13/2021 09	9:12	
	Sample Depth (feet)	·	14.5				5.5	•			14.				5.5				14.5	. •		•	14.5				5.5		
	Sample Type		N				N				N				N			1	N				FD				N		
	Field Sample ID		SG-VW34B-0)2			SG-VW35A-0	3			SG-VW3	5B-02			SG-VW3	6A-02			SG-VW36B-02	2			SG-VW36B-0	3			SG-VW37A-	-02	
	Lab Sample ID		2107284-15	A			2108390-01 <i>A</i>	١			2107241	A-23A			2107260	A-05A			2107260A-03/	4			2107260A-04	Α			2107260A-1	7A	
	Status		Validated				Validated				Valida	ted		ļ	Valida	ited			Validated				Validated				Validated	-	
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason I	MDL R	L Re	esult	QA Reas	son ME	L RL	Resu	It QA Rea	son MDL	RL	. Result	QA Reason N	ИDL	RL	Result	QA Reason	ИDL	RL	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m³	ND		0.75		ND				ND	UJ 4D	0.6				0.72	_).73	_	ND		0.73	5.8	ND		0.65	+
Cvclohexane	TO-15 μg/m ³	ND		0.89		24				ND	UJ 4D		3.8	NE		0.84	_			0.86	4.0	ND		0.86	4.0	34		+	3.5
Dibromochloromethane	TO-15 μg/m ³	ND		1.4	10	ND				ND	UJ 4D	1.				1.4				1.4	10	ND		1.4	10	ND			
Dibromomethane	TO-15 μg/m ³	ND		1.6	34	ND		1.1 3	_	ND	UJ 4D	1.	_	NE		1.6	32	ND		1.6	33	ND		1.6	33	ND		1.4	29
Ethanol	TO-15 μg/m ³	ND		2.4	23	ND		2.4 2	_	24	J- 4D	2.	_	NE		2.3			1	2.4	22	ND		2.4	22	ND		2.1	19
Ethyl Acetate	TO-15 μg/m ³	ND		4.9	17	ND		0.88 1	_	ND	UJ 4D	0.9	_		-	4.7			 	4.8	17	ND		4.8	17	ND		4.2	+
Ethylbenzene	TO-15 μg/m ³	ND		0.87		13				ND	UJ 4D	1.		+		0.83	-			0.85		ND		0.85		49			4.5
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		1.5	20	ND		0.92 1		ND	UJ 4D	0.9				1.4				1.5	20	ND		1.5	20	ND		1.3	17
Freon 11	TO-15 μg/m ³	ND		0.77		ND		1.3 5		ND	UJ 4D	1.	_			0.74).75		ND		0.75		ND			5.8
Freon 12	TO-15 μg/m ³	9.3		1.1	5.9	ND				ND	UJ 4D	0.8	_	+		1.0	_	_		1.0	5.8	ND		1.0	5.8	ND			5.1
Freon 113	TO-15 μg/m ³	ND		1.4	9.2	ND				ND	UJ 4D	1.	_	+		1.4	_		+	1.4	9.0	ND	+	1.4	9.0	ND	1		7.9
Freon 114	TO-15 μg/m ³	ND		1.2	8.4	ND		1.3 7		ND	UJ 4D	1.				1.1				1.1	8.2	ND		1.1	8.2	ND			7.2
Freon 134a	TO-15 μg/m ³	ND		2.7	20	ND		2.2 1		ND	UJ 4D	2.		+		2.6	_			2.6	20	ND	+	2.6	20	ND		2.3	
Heptane	TO-15 μg/m ³	ND		0.88	_	ND				ND	UJ 4D	1.		+		0.83			 	0.86	4.8	ND		0.86	4.8	34		_	4.2
Hexachlorobutadiene	TO-15 μg/m ³	ND		5.7	51	ND		4.1 4		ND	UJ 4D	4.		+		5.4	_		 	5.5	50	ND		5.5	50	ND		4.9	
Hexachloroethane	TO-15 μg/m ³	ND		46	46	ND		41 4		ND	UJ 4D	4:				44	_		+	45	45	ND		45	45	ND		40	40
Hexane	TO-15 μg/m ³	ND		0.78		4,300		0.68 3		ND	UJ 4D	0.7	_	+		0.74	-		+	0.76	4.1	ND		43 0.76	4.1	26		-	3.6
Iodomethane	TO-15 μg/m ³	ND	1	3.8	70	4,300 ND		0.79 6		ND	UJ 4D	0.7				3.6	_	_		3.7	68	ND		3.70	68	ND		3.3	60
Isopropyl ether	TO-15 μg/m ³	ND		1.3	20	ND		0.52 1		ND	UJ 4D	0.6	_	+		1.3			+	1.3	20	ND		1.3	20	ND		1.2	17
m- & p-Xylenes	TO-15 μg/m ³	ND		2.8	5.2	53				ND	UJ 4D	1.		+		2.7	-		+	2.8	5.1	ND		2.8	5.1	170		2.4	4.5
Methyl <i>tert</i> -butyl ether	TO-15 μg/m ³	ND		1.1	17	ND	-		_	ND	UJ 4D	0.8	_	+		1.0	-		+	1.0	17	ND		1.0	17	38		0.91	15
Methylene Chloride	TO-15 μg/m ³	ND		2.4	42	ND		0.75 3		ND	UJ 4D	0.7		+		2.2	-				41	ND		2.3	41	ND		2.0	36
Naphthalene	TO-15 μg/m ³	ND		0.82	12	ND		4.2 1		ND	UJ 4D	4.				0.78	_			2.3	12	ND		2.3 0.80	12	ND			11
o-Xylene		ND		1.4	5.2					ND	UJ 4D	1.		+					+	1.4	5.1	ND		1.4		49		1.2	
Propylbenzene		ND		0.33	_	18 ND				ND ND	UJ 4D	0.9	_	+		1.3 0.31	_	_	+	0.32		ND		0.32	5.1				5.1
	, ,												66 7.6	_			_					ND			5.8	8.8	+	+	7.1
Propylene Styrono	, ,	ND		1.6 0.59	8.3	ND				ND	UJ 4D UJ 4D					1.5		_		1.5				1.5	8.0	ND ND			
Styrene tert-Amyl methyl ether	TO-15 μg/m³ TO-15 μg/m³	ND		2.9		ND ND				ND ND		0.6		NE		0.56 2.8).58 2.8	20	ND ND		0.58 2.8		ND		0.51 2.5	4.4
											UJ 4D							ND		_							+	2.5	12
tert-Butyl alcohol		ND		1.3		ND		0.88 1		34	J- 4D		13			1.2				_		ND				ND			
Tetrachloroethene	TO-15 μg/m ³				_	400		1.1 7		190	J- 4D		2 7.5					190		_		170				ND			7.0
Tetrahydrofuran					3.5			0.63 3		ND	UJ 4D		66 3.2					ND			3.4					ND		0.66	
Toluene	TO-15 μg/m ³	ND				5.2		0.41 4		ND	UJ 4D		3 4.1					ND ND		1.1		ND				92		0.94	
TPH - Gasoline						7,800		430 43	_	ND	UJ 4D		0 450					ND				ND				3,100	1		420
trans-1,2-Dichloroethene		ND			_	ND		1.1 4		ND	UJ 4D		1 4.4			1.9	_	ND				ND				ND		_	4.1
trans-1,3-Dichloropropene				0.75	_	ND		0.83 4		ND	UJ 4D		5.0					ND				ND				ND		0.64	_
Trichloroethene		ND			6.4			0.81 5		ND	UJ 4D		5.9					ND				9.2				ND		0.70	
Vinyl Acetate	TO-15 μg/m ³	ND		3.3		ND		4.0 1		ND	UJ 4D		2 15			3.2				3.2		ND				ND			14
Vinyl Bromide	TO-15 μg/m ³	ND			21			1.2 1	_	ND	UJ 4D		3 19	_				ND				ND				ND			18
Vinyl Chloride	TO-15 μg/m ³	ND		1.2	3.1	ND	(0.68 2	.7 I	ND	UJ 4D	0.7	'1 2.8	NE		1.1	2.9	ND		1.2	3.0	ND		1.2	3.0	ND		1.0	2.6

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 15 of 37)

	Lagation ID		\/\\/27D				\/\\/27D				\/\^/20^		1		\ /\\/20 ^				////20D		1		\/\\/\\\				/////		
	Location ID		VW37B 07/13/2021 08	2.26			VW37B	6		_	VW38A	7.24			VW38A 07/14/2021			,	VW38B 07/14/2021 09	.40			VW39A 07/14/2021 0	0.16			VW39B 07/14/2021 0		
	Sampling Date/Time Sample Depth (feet)	(07/13/2021 08 14.5	5.∠0		'	07/13/2021 08:2 14.5	.U		C)7/14/2021 10 5.5	J.∠4			5.5	10.24		'	14.5	.42			07/14/2021 0 5.5	y. 10			14.5	7O.4 I	
	Sample Depth (leet)		14.5 N				14.5 FD				5.5 N				FD				14.5 N				5.5 N				14.5 N		
	Field Sample ID		SG-VW37B-	03			SG-VW37B-04				SG-VW38A-	02			SG-VW38A	N-03			SG-VW38B-0)3			SG-VW39A	-02			SG-VW39B	3-02	
	Lab Sample ID		2107260A-1				2107260A-16A				2107284-07				2107284-0				2107284-06				2107284-0				2107284-0		
	Status		Validated				Validated				Validated				Validate				Validated	•			Validated				Validated		
Analyte	Method Units	Result	OA Reason	МП	l _{RI}	Result	QA Reason M	ni I e	SI E	Recult	QA Reason	МП	l RI	Recult	QA Reasor	MDL	RL	Result	QA Reason	мы І	RI	Regult	QA Reason	Імп	l RI	Result	QA Reason	Лмп	RI
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	Q/ (TCGSOII	1.0	28	ND		- 1	28	ND	Q/ C Trodoon	1.2	32	ND	Q/Y YCCCOO!	1.2	32	ND	Q/ Treasen	1.1	29	ND	Q/ C TREASON	1.0	28	ND	Q/ Treasen	_	31
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.67	5.5	ND	1		5.6	ND		0.77	_	ND		0.76		ND		0.69		ND		0.68		ND		0.75	
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.54	7.0	ND			7.0	ND		0.63		ND		0.62	8.0	ND		0.56	7.2	ND		0.55		ND			7.8
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.76	5.5	ND			5.6	ND		0.87		ND		0.86		ND		0.78	-	ND		0.77		ND		0.84	
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.54	4.1	ND			1.1	ND		0.62		ND		0.61	4.7	ND	-	0.55		ND		0.54	_	ND		0.60	
1,1-Dichloroethene	TO-15 μg/m ³	ND		0.84	4.0	ND		85 4		ND			_	ND		0.96		ND		0.86		ND		0.85		ND		0.94	
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.1	11	ND			11	ND		2.4	13	ND		2.4	12	ND		2.1	11	ND		2.1	11	ND			12
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.9	24	ND	1		25	ND		2.2	28	ND		2.1	28	ND		1.9	25	ND		1.9	25	ND			27
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		3.4	30	ND			30	ND		3.9	35	ND		3.9	34	ND		3.5	31	ND		3.4	30	ND			34
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		1.8	5.0	ND			5.0	ND		2.1	5.8	ND		2.1	5.7	ND		1.9	5.1	ND		1.9	5.1	ND			5.6
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		3.8	39	ND			40	ND		4.3	45	ND		4.3	45	ND		3.9	40	ND		3.8	40	ND			44
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		0.66	7.8	ND			7.9	ND		0.76		ND		0.75	8.9	ND		0.68	-	ND		0.67	7.9	ND		0.74	
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.52	6.1	ND			6.2	ND		0.60		ND		0.60	7.0	ND		0.54		ND		0.53	6.2	ND		0.58	
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.82	4.1	ND	0	.83 4	l.1	ND		0.95	4.7	ND		0.94	4.7	ND		0.85	4.2	ND		0.84	4.2	ND		0.92	4.6
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 5A	1.6	4.7	ND	UJ 5A 1	.6 4	1.7	ND	UJ 5A	1.8	5.4	ND	UJ 5A	1.8	5.4	ND	UJ 5A	1.6	4.8	ND	UJ 5A	1.6	4.8	ND	UJ 5A	1.8	5.2
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		0.77	5.0	ND	0	.78 5	5.0	ND		0.89	5.8	ND		0.88	5.7	ND		0.80	5.1	ND		0.79	5.1	ND		0.87	5.6
1,3-Butadiene	TO-15 μg/m ³	ND		0.74	2.2	ND	0	75 2	2.3	ND		0.85	2.6	ND		0.85	2.6	ND		0.76	2.3	ND		0.75	2.3	ND		0.83	2.5
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.78	6.1	ND	0	79 6	6.2	ND		0.90	7.0	ND		0.89	7.0	ND		0.80	6.3	ND		0.79	6.2	ND		0.87	6.8
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.40	6.1	ND	0	40 6	3.2	ND		0.46	7.0	ND		0.45	7.0	ND		0.41	6.3	ND		0.40	6.2	ND		0.44	6.8
1,4-Dioxane	TO-15 μg/m ³	ND		0.72	15	ND	0	.73	15	ND		0.84	17	ND		0.83	17	ND		0.75	15	ND		0.74	15	ND		0.81	16
2,2,4-Trimethylpentane	TO-15 μg/m³	ND		0.37	4.7	ND	0	37 4	1.8	ND		0.42	5.5	ND		0.42	5.4	ND		0.38	4.9	ND		0.37	4.8	ND		0.41	5.3
2-Butanone (Methyl Ethyl Ketone	e) TO-15 μg/m ³	ND		2.1	12	ND	2	.1 1	12	ND		2.4	14	ND		2.4	14	ND		2.2	12	ND		2.1	12	ND		2.4	13
2-Hexanone	TO-15 μg/m ³	ND		1.4	17	ND			17	ND		1.6	19	ND		1.6	19	ND		1.4	17	ND		1.4	17	ND		1.6	18
2-Propanol	TO-15 μg/m ³	ND		0.67	10	ND	0	.68	10	ND		0.77	12	11		0.76	11	ND		0.69	10	ND		0.68	10	ND		0.75	
3-Chloropropene	TO-15 μg/m ³	ND		1.3	13	ND			13	ND		1.5	15	ND		1.5	14	ND		1.3	13	ND		1.3	13	ND		1.4	
4-Ethyltoluene	TO-15 μg/m ³	ND		1.3	5.0	ND	1	.3 5	5.0	ND			_	ND		1.4	5.7	ND		1.3	5.1	ND		1.3	5.1	ND		1.4	
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		0.62	4.2	ND		63 4	1.2	ND		0.72		ND		0.71		ND			4.3	ND		0.63		ND		0.70	4.6
Acetone	TO-15 μg/m ³			1.7						ND		2.0		31		2.0	28	ND				ND			24				27
Acrolein	TO-15 μg/m ³	ND	UJ 5F			ND		.8 9		ND	UJ 5F		11	ND	UJ 5F	3.2		ND			9.6		UJ 5F			ND	UJ 5F		10
Acrylonitrile	TO-15 μg/m ³	ND				ND		.84 8		ND				ND		0.95		ND								ND		0.93	
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.42		ND		43 5		ND			6.0				6.0	ND				ND				ND		0.47	
Benzene	TO-15 μg/m ³	ND		0.24				25 3	_	ND			3.7	ND		0.28		ND				ND				ND		0.27	
Bromodichloromethane	TO-15 μg/m ³	ND		1.3	_			.3 6		ND			7.8	ND		1.5		ND	-			ND			-	ND		_	7.6
Bromoform	TO-15 μg/m ³	ND		0.90				.91 ′		ND		1.0		ND		1.0	12	ND		0.93		ND		+	11			1.0	
Bromomethane	TO-15 μg/m ³	ND		1.8	39		t t	.8 4		ND		2.0	45	ND		2.0	_	ND		1.8		ND		1.8		ND		2.0	
Carbon Disulfide	TO-15 μg/m ³	ND		3.0	13			.0 ′	_	ND				ND		3.4		ND		3.0	13			3.0		ND		3.3	
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.0	6.4			.0 6		ND			7.4	ND		1.2		ND			6.6					ND		1.2	
Chlorobenzene	TO-15 μg/m ³	ND		0.41	4.7			41 4	_	ND		0.47		ND		0.47	_	ND				ND		0.41		ND		0.46	
Chloroethane	TO-15 μg/m ³	ND		2.2	11				11	ND		2.5	_	ND		2.5		ND		2.2	11	ND		2.2		ND		2.4	
Chloroform	TO-15 μg/m ³	ND		0.59				.59 5		ND		0.68	_	ND		0.67		7.2		0.60		ND				ND		0.66	
Chloromethane	TO-15 μg/m ³	ND		2.2	21	ND		2.2		ND				ND		2.5		ND				ND			21			2.5	
cis -1,2-Dichloroethene	TO-15 μg/m ³	ND		0.73		ND		73 4		ND			4.6				4.6	ND			4.1					ND		0.81	
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.67	4.6	ND	0	68 4	1.6	ND		0.77	5.3	ND		0.77	5.3	ND		υ.69	4.7	ND	I	0.68	4.7	ND		0.75	5.2

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 16 of 37)

	Location ID	\	VW37B		VW37B	T		VW38A		1		VW38A		Ī		VW38B		I		VW39A				VW39B		
	Sampling Date/Time		3/2021 08:26		07/13/2021 08:26		(07/14/2021 1	0:24			07/14/2021 10	0:24		(07/14/2021 09	:42			07/14/2021 (9:16			07/14/2021 0	8:41	
	Sample Depth (feet)	0.7.0	14.5		14.5			5.5				5.5	· ·			14.5				5.5				14.5	.	
	Sample Type		N		FD			N				FD				N				N				N		
	Field Sample ID	SG-	·VW37B-03		SG-VW37B-04			SG-VW38A-	02			SG-VW38A-	-03			SG-VW38B-0)3			SG-VW39A	-02			SG-VW39B	-02	
	Lab Sample ID		7260A-15A		2107260A-16A			2107284-07				2107284-08				2107284-06/	4			2107284-0				2107284-04		
	Status	V	/alidated		Validated			Validated				Validated	1			Validated				Validated	<u> </u>			Validated	<u> </u>	
Analyte	Method Units	Result I OA	Peason MDI DI	Pacult	QA Reason MDL	DI I	Docult	OA Peason	MDI	Гы	Pocult	OA Peason	МП	DI	Pacult	OA Peason	мы	DI	2acult	I OA Basson	Імп	Ιы	Pacult	QA Reason	IMDI	Ιρι
Cumene	TO-15 μg/m ³	ND ND	0.64 5.0			5.0	ND	QA INCASUII	0.73		ND	QA Reason		_	ND			5.1	ND	QA INCASUI	0.65	_	ND	QA Reason	0.71	
Cyclohexane	TO-15 μg/m ³	ND	0.75 3.5		†	3.5	ND		0.86		ND			4.0	ND			3.6	ND		0.76		ND		0.84	
Dibromochloromethane	TO-15 μg/m ³	ND	1.2 8.6	ND		8.7	ND		1.4	10	ND			9.9	ND			8.9	ND		1.2	8.8	ND			9.7
Dibromomethane	TO-15 μg/m ³	ND	1.4 29	ND		29	ND		1.6	33	ND		1.6	33	ND		1.4	30	ND		1.4	29	ND			32
Ethanol	TO-15 μg/m ³	ND	2.1 19	ND		19	ND	UJ 2A-		22	ND	UJ 2A-	2.4	22	ND	UJ 2A-	2.1	20	ND	UJ 2A-	+	19	ND	UJ 2A-		21
Ethyl Acetate	TO-15 μg/m ³	ND	4.2 15	ND	4.2	15	ND	00 ZA-	2.4 4.8	17	ND	00 ZA-	4.8	17	ND		4.3	15	ND	00 ZA-	2.1 4.2	15	ND	00 ZA-	4.7	16
Ethylbenzene	TO-15 μg/m ³	ND	0.74 4.4	ND		4.4	ND		0.85		ND			5.0	ND			4.5	ND		0.75		ND		0.82	1
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND	1.3 17	ND		17	ND		1.5	20	ND		1.4	19	ND		1.3	4.5	ND		1.3	17	ND		1.4	19
Freon 11	TO-15 μg/m ³	ND	0.65 5.7	ND		5.8	ND ND		0.75		ND			6.5	ND			5.9	ND		0.66		ND		0.73	_
Freon 12					 		ND		1.0	5.8	ND			5.7	ND	t			ND		0.00	_	ND			5.6
Freon 113		ND ND	0.91 5.0 1.2 7.8	ND ND		5.1 7.8	ND ND		1.4	9.0	ND			8.9	ND			5.2 8.0	ND		1.2	5.1 7.9	ND			8.7
Freon 114	TO-15 μg/m³ TO-15 μg/m³		0.98 7.1				ND ND			8.2	ND				ND ND				ND ND		0.99		ND			7.9
Freon 134a	TO-15 μg/m ³	ND		ND		7.2	ND ND			20			1.1 2.6	8.1			1.0 2.4	7.3	ND ND			7.2 17	ND		1.1	19
		ND		ND	 				2.6		ND		-	19	ND			17			2.3				0.83	
Heptane	TO-15 μg/m ³	ND	0.74 4.2	ND		4.2	ND				ND			4.8	ND			4.3	ND		0.75		ND			1
Hexachlorobutadiene	TO-15 μg/m ³	ND	4.8 43	ND	 	44	ND		5.5	50	ND		5.5	49	ND		4.9	44	ND		4.9	44	ND		+	48
Hexachloroethane	TO-15 μg/m ³	ND	39 39	ND		40	ND		45	45	ND		45	45	ND		40	40	ND		40	40	ND		44	44
Hexane	TO-15 μg/m ³	ND	0.66 3.6	ND	l	3.6	ND		0.76	4.1	ND		0.76	4.1	ND		_	3.7	ND		0.67	3.6	ND		0.74	
lodomethane	TO-15 μg/m ³	ND	3.2 59	ND		60	ND		3.7	68	ND		3.7	67	ND			61	ND		3.3	60	ND			1
Isopropyl ether	TO-15 μg/m ³	ND	1.1 17	ND		17	ND		1.3	20	ND		1.3	19	ND		1.2	17	ND		1.2	17	ND		_	-
m- & p-Xylenes	TO-15 μg/m ³	ND	2.4 4.4	ND		4.4	ND		2.8	5.1	ND		2.8	5.0	ND		2.5	4.5	ND		2.4	4.5	ND			4.9
Methyl tert-butyl ether	TO-15 μg/m ³	ND	0.90 15	ND		15	ND		1.0	17	ND		1.0	17	ND		0.92	15	ND		0.91	15	ND		1.0	16
Methylene Chloride	TO-15 μg/m ³	ND	2.0 35	ND		36	ND		2.3	41	ND		2.3	40	ND		2.1	36	ND	==	2.0	36	ND	l		39
Naphthalene	TO-15 μg/m ³	ND	0.69 11	ND		11	ND	UJ 5B-	0.80		ND	UJ 5B-	0.79	12	ND	UJ 5B-	0.71	11	ND	UJ 5B-	0.70		ND	UJ 5B-	0.78	1
o-Xylene	TO-15 μg/m ³	ND	1.2 4.4	ND		4.4	ND		1.4	5.1	ND		-	5.0	ND		1.2	4.5	ND		1.2	4.5	ND		_	+
Propylbenzene	TO-15 μg/m ³	ND	0.28 5.0	ND		5.0	ND		0.32		ND		0.32	5.7	ND		0.29	5.1	ND		0.28		ND			_
Propylene	TO-15 μg/m ³	ND	1.3 7.0	ND	t	7.0	ND		1.5	8.0	ND		1.5	8.0	ND		1.4	7.2	ND		1.3	7.1	ND			7.8
Styrene	TO-15 μg/m ³	ND	0.50 4.3	ND		4.4 17	ND		0.58	5.0	ND			4.9	ND		0.52	4.4	ND		0.51	4.4	ND		0.56	4.8 19
tert-Amyl methyl ether	TO-15 μg/m ³	ND	2.5 17	ND	2.0		ND		2.8	20	ND		2.8	19	ND		2.5	17	ND		2.5	17	ND		2.8	
tert-Butyl alcohol	TO-15 μg/m ³	ND	1.1 12			12	ND		1.3	14	ND		1.3	14	ND			13	ND		1.1	12	ND		_	14
Tetrachloroethene	TO-15 μg/m ³	ND	1.2 6.9		1.2		130				120			7.9	35			7.1	22				16			7.7
Tetrahydrofuran	TO-15 μg/m ³	ND	0.65 3.0		0.65		ND		0.75		ND				ND		0.67						ND		0.72 1.0	3.3
Toluene	TO-15 μg/m ³	ND	0.92 3.8		0.93		ND			4.4	ND			4.4	20		0.95				0.94		12		1.0	4.3
TPH - Gasoline	TO-15 μg/m ³	ND	420 420		420						ND		470		ND		430						ND			460
trans-1,2-Dichloroethene	TO-15 μg/m ³	ND	1.7 4.0		1.7		ND				ND			4.6	ND		1.7		ND		1.7		ND			4.5
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND	0.63 4.6		0.64		ND				ND				ND		_		ND		0.64				0.71	
Trichloroethene	TO-15 μg/m ³	ND	0.69 5.4		0.69		ND				ND				ND		0.71		ND				ND		0.77	
Vinyl Acetate	TO-15 μg/m ³	ND	2.8 14	ND		14	ND		3.2		ND		3.2	16	ND			15	ND		2.9	14			3.2	
Vinyl Bromide	TO-15 μg/m ³	ND	1.4 18			18	ND			20	ND			20	ND			18			1.4	_			_	20
Vinyl Chloride	TO-15 μg/m ³	ND	1.0 2.6	ND	1.0	2.6	ND		1.2	3.0	ND		1.2	3.0	ND		1.0	2.7	ND		1.0	2.6	ND		1.1	2.9

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 17 of 37)

	Location ID		VW40A		1		VW40B				VW41A			VW41	R		I	VW42A	1		1	VW42A				VW42B		
	Sampling Date/Time		07/13/2021 07:	46		(07/13/2021 07	7.05			07/13/2021 1	0:30		07/13/2021				07/13/2021				07/13/2021 1	1:56			07/13/2021		
	Sample Depth (feet)		5.5			`	14.5	.00			5.5	0.00		14.5				5.5	11.00			5.5				14.5		
	Sample Type		N				N				N			N				N				FD				N		
	Field Sample ID		SG-VW40A-02	2			SG-VW40B-	02			SG-VW41A	-03		SG-VW41	B-02			SG-VW42	4-03			SG-VW42A	-04			SG-VW42E	3-02	
	Lab Sample ID		2107260A-14	Α			2107260A-1	3A			2107260A-1	9A		2107260A	-18A			2107260A	-21A			2107260A-2	22A			2107260A-	-20A	
	Status		Validated				Validated				Validated	1		Validate	ed			Validate	d			Validated	<u> </u>			Validate	d	
l			l l.	1	l.	1	1				l	l l		1	1	1		l	I I	ı <u>.</u> .		l	l	1	L .		1	1
Analyte	^		QA Reason N				QA Reason				QA Reason			QA Reaso	_	1		QA Reason		RL	Result	QA Reason	1	†	1	t QA Reasor	_	
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³ TO-15 μg/m ³	ND ND		1.0 0.66	28 5.5	ND ND		1.1 0.69	29 5.7	ND ND		1.0 28 0.67 5.5	ND ND		1.0 0.69	5.7	ND ND		0.70	29 5.8	ND ND		0.70	29 5.8	1		_	30 5.9
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.54	6.9	ND		0.56	7.2	ND		0.67 5.5	ND		0.56		ND		0.70	7.3	ND		0.70	7.3				3.9
1,1,2,Z-Tetracriloroethane	TO-15 μg/m ³	ND		0.54	5.5	ND		0.56	5.7	ND ND		0.54 6.9	ND		0.56		ND	 	0.57	5.8	ND		0.57		1	+		5.9
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.73		ND		0.78	4.2	ND		0.73 3.3	ND		0.77		ND		0.79	4.3	ND		0.79	4.3	1	+		7 4.4
1,1-Dichloroethene	TO-15 μg/m ³	ND		0.83	4.1	ND		0.87	4.2	ND		0.84 4.0	ND		0.86		ND		0.88	4.2	ND		0.88	1				4.4
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.0	11	ND		2.2	11	ND		2.1 11	ND		2.1	11	ND		2.2	12	ND		2.2	11	ND		2.2	
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.8	24	ND		1.9	25	ND	 	1.8 24	ND		1.9	25	ND		2.0	26	ND		1.9	26	ND			
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		3.4	30	ND		3.5	31	ND	1	3.4 30	ND		3.5	31	ND	1	3.6	32	ND		3.5	31	ND			32
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		1.8	4.9	ND		1.9	5.2	ND		1.8 5.0	ND		1.9	5.1	ND		1.9	5.2	ND		1.9	5.2	1	+		5.3
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		3.7	39	ND		3.9	40	ND		3.8 39	ND		3.9	40	ND		4.0	41	ND		3.9		1			42
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		0.65		ND		0.68	8.1	ND		0.65 7.8	ND		0.67	+	ND		0.69	8.2	ND		0.69		ND			8.3
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.52		ND		0.54	6.3	ND		0.52 6.1	ND		0.53		ND		0.55	6.4	ND		0.54		1			6.5
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.82	4.1	ND		0.85	4.2	ND		0.82 4.1	ND		0.84		ND		0.87	4.3	ND		0.86		1			3 4.4
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.6	4.6	ND	UJ 5A	1.6	4.8	ND	UJ 5A	1.6 4.7	ND	UJ 5A	1.6	4.8	ND	UJ 5A	1.6	4.9	ND	UJ 5A	1.6	4.9		UJ 5A		5.0
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND	(0.77	4.9	ND		0.80	5.2	ND		0.77 5.0	ND		0.79	5.1	ND		0.81	5.2	ND		0.81	5.2	ND		0.83	5.3
1,3-Butadiene	TO-15 μg/m ³	ND	(0.73	2.2	ND		0.77	2.3	ND		0.74 2.2	ND		0.76	2.3	ND		0.78	2.4	ND		0.77	2.3	ND		0.79	2.4
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	(0.77	6.0	ND		0.81	6.3	ND		0.78 6.1	ND		0.80	6.2	ND		0.82	6.4	ND		0.82	6.4	ND		0.83	6.5
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	(0.39	6.0	ND		0.41	6.3	ND		0.39 6.1	ND		0.40	6.2	ND		0.41	6.4	ND		0.41	6.4	ND		0.42	6.5
1,4-Dioxane	TO-15 μg/m ³	ND	(0.72	14	ND		0.75	15	ND		0.72 14	ND		0.74	15	ND		0.76	15	ND		0.76	15	ND		0.77	16
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	(0.36	4.7	ND		0.38	4.9	ND		0.36 4.7	ND		0.38	4.8	ND		0.38	5.0	ND		0.38	5.0	ND		0.39	5.1
2-Butanone (Methyl Ethyl Ketone) TO-15 μg/m ³	ND		2.1	12	ND		2.2	12	ND		2.1 12	ND		2.2	12	ND		2.2	12	ND		2.2	12	ND		2.2	13
2-Hexanone	TO-15 μg/m ³	ND		1.4	16	ND		1.5	17	ND		1.4 16	ND		1.4	17	ND		1.5	17	ND		1.5	17	ND		1.5	18
2-Propanol	TO-15 μg/m ³	ND	(0.66	9.9	ND		0.69	10	ND		0.66 9.9	ND		0.68	10	ND		0.70	10	ND		0.70	10	27		0.72	2 11
3-Chloropropene	TO-15 μg/m ³	ND		1.3	12	ND		1.3	13	ND		1.3 13	ND		1.3	13	ND		1.4	13	ND		1.3	13	ND		1.4	14
4-Ethyltoluene	TO-15 μg/m ³	ND		1.2	4.9	ND		1.3	5.2	ND		1.3 5.0	ND		1.3	5.1	ND		1.3	5.2	ND		1.3	5.2	ND		1.4	5.3
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		0.62	4.1	ND		0.65	4.3	ND		0.62 4.1	ND		0.64	4.3	ND		0.66	4.4	ND		0.65	4.3	ND		0.67	4.4
Acetone	TO-15 μg/m ³	ND		1.7	24	ND		1.8	25	ND		1.7 24	ND		1.8	25	ND		1.8	25	ND		1.8	25	ND		1.8	26
Acrolein	TO-15 μg/m ³	ND			9.2	ND	UJ 5F	2.9			UJ 5F	2.8 9.3		UJ 5F	2.9			UJ 5F	2.9	9.8	ND	UJ 5F		9.7				10
Acrylonitrile	TO-15 μg/m ³	ND			8.7				9.1			0.83 8.8				9.0	ND		0.88	9.2	ND				ND			9.4
alpha-Chlorotoluene	TO-15 μg/m ³	ND			5.2				5.4			0.42 5.2				5.4	ND		0.44	5.5	ND				ND			5.6
Benzene	TO-15 μg/m ³	ND			3.2				3.4			0.24 3.2				3.3			0.26	3.4	ND			3.4				3.5
Bromodichloromethane	TO-15 μg/m ³	ND			6.7				7.0			1.3 6.8			1.3				1.4	7.1	ND			7.1				7.3
Bromoform	TO-15 μg/m ³	ND		0.90	10	ND		0.94				0.90 10	ND		0.93		ND		0.95	11	ND		0.94			+		11
Bromomethane	TO-15 μg/m ³	ND		1.8	39	ND		1.8	41			1.8 39	ND		1.8	40	ND		1.8	41	ND		1.8	41				42
Carbon Disulfide	TO-15 μg/m ³	ND		2.9	12	ND		3.1	13			3.0 12	ND		3.0	13	ND	-	3.1	13	ND		3.1	13				14
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.0	6.3	ND		1.1	6.6			1.0 6.4	ND		1.1	6.5			1.1	6.7	ND		1.1	6.7				6.8
Chlorobenzene	TO-15 μg/m ³	ND		0.40	4.6	ND		0.42				0.41 4.6	ND		0.42				0.43	4.9	ND			4.9	+	+		5.0
Chloroethane	TO-15 μg/m ³	ND		2.1	11	ND		2.2	11			2.1 11	ND		2.2		ND		2.3	11	ND		2.2			+		11
Chloroform	TO-15 μg/m ³	ND		0.58	4.9	ND		0.61				0.58 4.9	ND			5.1	ND		0.62	5.2	ND		0.61					5.3
Chloromethane	TO-15 μg/m ³	ND		2.2	21	ND		2.3	22	ND		2.2 21	ND		2.3		ND		2.3	22	ND		2.3					22
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND			4.0	ND			4.2			0.72 4.0				4.1	ND		0.76	4.2	ND			4.2				4.3
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	(0.66	4.6	ND		0.69	4.8	ND		0.67 4.6	ND		0.69	4.7	ND		0.70	4.8	ND		0.70	4.8	ND		0.72	. 4.9

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 18 of 37)

	Location ID		\/\\/\			VW40B		Т		VW41A		1		VW41B	<u> </u>		VW42A		T .	VW42A			VW42B		—
	Location ID Sampling Date/Time	,	VW40A 07/13/2021 07:46		,	VVV40B 07/13/2021 07:0	1 5			VVV41A 07/13/2021 10	.30		(07/13/2021 09:45			07/13/2021 11:56			07/13/2021 11:56			70042B 07/13/2021 1	1.02	
	Sample Depth (feet)	· `	5.5		,	14.5	55			5.5	.30		,	14.5			5.5			5.5		'	14.5	1.03	
	Sample Type		N.			N				N.				N			0.5 N			FD			N		- 1
	Field Sample ID		SG-VW40A-02			SG-VW40B-02	2			SG-VW41A-0)3			SG-VW41B-02			SG-VW42A-03			SG-VW42A-04			SG-VW42B-	02	
	Lab Sample ID		2107260A-14A			2107260A-13/	4			2107260A-19	PΑ			2107260A-18A			2107260A-21A			2107260A-22A			2107260A-2	0A	
	Status		Validated			Validated				Validated				Validated			Validated			Validated			Validated		
Analyto	Mathad Unita	Daguit	OA Bassar IMDLI	D	السمما	LOA Bassan LA	ını I	ы .	Daguit	QA Reason	мы І	DI	Daguit	OA Bassan IMDI I DI			LOA Bassan LMDI I	RL	Desult	QA Reason MDL	RL	Daguit	QA Reason	LMDL	DI.
Analyte		ND	QA Reason MDL 0.63		ND	QA Reason N			ND	i	-	5.0		QA Reason MDL RI		ND	QA Reason MDL 0.67		Result ND			Result ND	QA Reason	0.68	
Curlebayene	TO-15 μg/m ³ TO-15 μg/m ³			4.9				5.2		 			ND					5.2		0.66	5.2				
Cyclohexane		ND		3.4	ND			3.6	ND		0.75		ND	0.77 3.6		ND	0.79	3.7	ND		3.6	ND		0.80	
Dibromochloromethane	TO-15 μg/m ³	ND		8.8	ND			8.9	ND			8.6	ND	1.2 8.8		ND	1.3	9.1	ND	1.2	9.0	ND			9.2
Dibromomethane	TO-15 μg/m ³	ND		28	ND			30	ND			29	ND	1.4 30		ND	1.5	30	ND	1.5	30	ND			31
Ethanol	TO-15 μg/m ³	ND	<u> </u>	19	ND		_	20	ND			19	ND	2.1 20		23	2.2	20	ND	2.2	20	ND			20
Ethyl Acetate	TO-15 μg/m ³	ND	<u> </u>	14	ND			15	ND			14	ND	4.3 15		ND	4.4	15	ND	4.4	15	ND			16
Ethylbenzene	TO-15 μg/m ³	ND		4.4	ND			4.6	ND		0.73		ND	0.76 4.9		ND	0.77	4.6	ND		4.6	ND		0.79	
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		17	ND			18	ND			17	ND	1.3 17		ND	1.3	18	ND	1.3	18	ND			18
Freon 11	TO-15 μg/m ³	ND			ND			5.9	ND		0.65		ND	0.67 5.8		ND	0.69	6.0	ND		6.0	ND		0.70	
Freon 12	TO-15 μg/m ³	ND		5.0	ND	C		5.2	ND		0.90		ND	0.93 5.	1	ND	0.95	5.3	ND	0.95	5.2	ND		0.97	
Freon 113	TO-15 μg/m ³	ND		7.7	ND			8.0	ND			7.7	ND	1.2 8.0	0	ND	1.3	8.2	ND	1.3	8.1	ND			8.3
Freon 114	TO-15 μg/m ³	ND	0.97	7.0	ND		1.0	7.3	ND		0.98	7.1	ND	1.0 7.3	3	ND	1.0	7.4	ND	1.0	7.4	ND		1.0	7.6
Freon 134a	TO-15 μg/m ³	ND	2.3	17	ND		2.4	18	ND		2.3	17	ND	2.3 17	7	ND	2.4	18	ND	2.4	18	ND		2.4	18
Heptane	TO-15 μg/m ³	ND	0.74	4.1	ND	C).77	4.3	ND		0.74	4.1	ND	0.76 4.3	3	ND	0.78	4.4	ND	0.78	4.3	ND		0.79	4.4
Hexachlorobutadiene	TO-15 μg/m ³	ND	4.7	43	ND	:	5.0	45	ND		4.8	43	ND	4.9 44	4	ND	5.0	45	ND	5.0	45	ND		5.1	46
Hexachloroethane	TO-15 μg/m ³	ND	39	39	ND		41	41	ND		39	39	ND	40 40	0	ND	41	41	ND	41	41	ND		42	42
Hexane	TO-15 μg/m ³	ND	0.66	3.5	ND	C	.69	3.7	ND		0.66	3.6	ND	0.68 3.7	7	4.0	0.70	3.8	ND	0.69	3.7	ND		0.71	3.8
Iodomethane	TO-15 μg/m ³	ND	3.2	58	ND		3.3	61	ND		3.2	59	DN	3.3 60	0	ND	3.4	62	ND	3.4	62	ND		3.4	63
Isopropyl ether	TO-15 μg/m ³	ND	1.1	17	ND		1.2	18	ND		1.1	17	ND	1.2 17	7	ND	1.2	18	ND	1.2	18	ND		1.2	18
m- & p-Xylenes	TO-15 μg/m ³	ND	2.4	4.4	ND		2.5	4.6	ND		2.4	4.4	ND	2.5 4.5	5	ND	2.5	4.6	ND	2.5	4.6	ND		2.6	4.7
Methyl tert-butyl ether	TO-15 μg/m ³	ND	0.89	14	ND	C	.93	15	ND		0.89	14	ND	0.92 15	5	ND	0.94	15	ND	0.94	15	ND		0.96	16
Methylene Chloride	TO-15 μg/m ³	ND	2.0	35	ND		2.1	36	ND		2.0	35	ND	2.0 36	6	ND	2.1	37	ND	2.1	37	ND		2.1	38
Naphthalene	TO-15 μg/m ³	ND		10	ND).72	11	ND		0.69	10	ND	0.71 11	1	ND	0.73	11	ND	0.72	11	ND		0.74	11
o-Xylene	TO-15 μg/m ³	ND		4.4	ND			4.6	ND			4.4	ND	1.2 4.9	5	ND	1.2	4.6	ND	1.2	4.6	ND		-	4.7
Propylbenzene	TO-15 μg/m ³	ND		4.9	ND			5.2	ND		0.28		ND	0.28 5.		ND	0.29	5.2	ND	1 1	5.2	ND		0.30	
Propylene	TO-15 μg/m ³	ND		6.9	ND			7.2	ND			7.0	ND	1.4 7.2		ND	1.4	7.3	ND	1.4	7.3	ND			7.5
Styrene	TO-15 μg/m ³	ND		4.3	ND		_	4.5	ND		0.50		ND	0.52 4.4		ND	0.53	4.5	ND	 	4.5	ND		0.54	
tert-Amyl methyl ether	TO-15 μg/m ³				ND			18		† †	2.4	17		2.5 17		ND	2.6	18	ND		18	ND		2.6	18
tert-Butyl alcohol	TO-15 μg/m ³		1.1					13			1.1	12	ND	1.1 13	_		1.2	13	ND			ND		1.2	13
Tetrachloroethene	TO-15 μg/m ³		1.2					_	37	†			8.5	1.2 7.0			1.3		31			8.8		1.3	
Tetrahydrofuran	TO-15 μg/m ³		0.64					_	ND		0.64			0.66 3.			0.68	3.1	ND			ND		0.69	
Toluene	TO-15 μg/m ³		0.92						ND		0.92	3 8	ND	0.95 3.9			0.97	4.0	ND			ND		0.99	
TPH - Gasoline	TO-15 μg/m ³		410 4						ND		410			420 42			440	440	ND			ND		440	
trans-1,2-Dichloroethene	TO-15 μg/m ³		1.6						ND		1.7			1.7 4.	_	ND	1.8	4.2	ND			ND		1.8	
trans-1,3-Dichloropropene	TO-15 μg/m ³		0.63						ND	+	0.63		ND	0.65 4.7		ND	0.66	4.2	ND	0.66				0.68	
	_							_	ND ND		0.68			0.65 4.	_	ND			ND ND					0.68	
Trichloroethene	TO-15 μg/m ³		0.68										ND			ND ND	0.72	5.7		0.72					
Vinyl Acetate	TO-15 μg/m ³				ND			15			2.8		ND	2.9 15			3.0	15	ND			ND		3.0	
Vinyl Chlorida	TO-15 μg/m ³				ND				ND		1.4		ND	1.5 18		ND	1.5	19	ND			ND		1.5	
Vinyl Chloride	TO-15 μg/m ³	ND	1.0	2.6	ND		1.0	2.7	ND		1.0	2.6	ND	1.0 2.0	б	ND	1.1	2.7	ND	1.1	2.7	ND		1.1	2.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 19 of 37)

	Lasatian ID		\	<u> </u>	\/\/\/\			\		ı	\/\/\/\/		1		\		ı	\/\//			\	
	Location ID Sampling Date/Time	,	VW43A 07/08/2021 12:10		VW43B 07/08/2021 12:45			VW44A 08/16/2021 09:53			VW44B 07/08/2021 17	7.46			VW45A 07/08/2021 13:58			VW45B 07/08/2021 1	4.20		VW46A 07/08/2021 1	
	Sample Depth (feet)	,	5.5		14.5)		5.5			14.5	7.40		,	5.5		1	14.5	4.30		5.5	5.36
	Sample Type		5.5 N		14.5 N			5.5 N			14.5 N				9.5 N			14.5 N			5.5 N	
	Field Sample ID		SG-VW43A-02		SG-VW43B-02			SG-VW44A-03			SG-VW44B-	-02			SG-VW45A-03			SG-VW45B	-02		SG-VW46A	-02
	Lab Sample ID		2107241A-01A		2107241A-02A			2108390-02A			2107241A-0				2107241A-03A			2107241A-(2107241A-0	
	Status		Validated		Validated			Validated			Validated				Validated			Validated			Validated	
						_			_				_			-			_		_	
Analyte	Method Units		QA Reason MDL	_		_		QA Reason MDL	1	1	t QA Reason				QA Reason MDL			QA Reason	1 1	_	QA Reason	
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND		34 ND	1.3		ND	1.5	29	ND		1.2	31	ND	1.6	31			1.2 31	ND		1.1 30
1,1,1-Trichloroethane	TO-15 μg/m ³	ND	0.53		0.5	_	ND	0.46				0.76		ND	0.48				0.76 6.2			0.72 6.0
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND	0.80		0.8	_	ND	0.69		ND			7.9	ND	0.72		ND		0.61 7.9			0.59 7.6
1,1,2-Trichloroethane	TO-15 μg/m ³	ND	1.1		1.	_	ND	0.94				0.85		ND	0.98				0.85 6.2	+		0.82 6.0
1,1-Dichloroethane	TO-15 μg/m ³	ND	1.0		1.		ND	0.90	_			0.60		ND	0.94				0.60 4.6	+		0.58 4.4
1,1-Dichloroethene	TO-15 μg/m ³	ND	1.6	4.9 ND	1.	7 5.2	ND	1.4	4.2	ND		0.95	4.5	ND	1.4	4.4	ND		0.95 4.5	ND		0.91 4.4
1,1-Difluoroethane	TO-15 μg/m ³	ND		13 37	3.		21	2.5	12	ND			12	ND	2.6	12			2.3 12	+		2.2 12
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		30 ND	2.	_	ND	1.6	26	ND			28	ND	1.7	27			2.1 28	+		2.0 26
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		37 ND	3.4		ND	2.8	32	ND		3.8	34	ND	2.9	33			3.8 34	+		3.7 33
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND	0.70		0.7	_	8.7	0.61	5.2			_	5.6	ND	0.64	5.5			2.1 5.6	+		2.0 5.4
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		48 ND	1.0		ND	1.3	41	ND		4.2	44	ND	1.4	43			4.2 44		1	4.1 42
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		9.5 ND	2.0	_	ND	1.6	8.2	ND		0.74		ND	1.7	8.6			0.74 8.8		1	0.71 8.4
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	0.84		0.8	_	ND	0.72		ND		0.59	1	ND	0.76		-		0.59 6.9	_		0.56 6.6
1,2-Dichloroethane	TO-15 μg/m ³	ND	0.82		0.8		ND	0.71				0.93		ND	0.74	4.5			0.93 4.6	_		0.89 4.4
1,2-Dichloropropane	TO-15 μg/m ³	ND		5.7 ND	1.4	_	ND	1.2	1	!	UJ 5A		5.3	ND	1.2	5.2		UJ 5A	1.8 5.3		UJ 5A	1.7 5.1
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		6.1 ND	1.3	3 6.4	ND	1.1	5.3			0.87		ND	1.1	5.5			0.87 5.6		_	0.84 5.4
1,3-Butadiene	TO-15 μg/m ³	ND	0.79	2.7 ND	0.8	_	ND	0.68	2.4	ND				ND	0.72		ND		0.84 2.5	_		0.80 2.4
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		7.4 ND	0.9	_	ND	0.74	6.4	ND		0.88	6.9	ND	0.77	6.7	ND		0.88 6.9			0.85 6.6
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	H H	7.4 ND	0.9	_	ND	0.76		ND		0.44	6.9	ND	0.80	6.7	ND		0.44 6.9			0.43 6.6
1,4-Dioxane	TO-15 μg/m ³	ND		18 ND	2.8	_	ND	2.3	15	ND		0.82	16	ND	2.4	16			0.82 16	ND	_	0.78 16
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		5.8 ND	0.7		ND	0.59				0.41	5.3	ND	0.61	5.2			0.41 5.3			0.40 5.1
2-Butanone (Methyl Ethyl Ketone		ND		14 ND	2.3	_	ND	1.9	13	ND		2.4	14	ND	2.0	13			2.4 14	ND		2.3 13
2-Hexanone	TO-15 μg/m ³	ND		20 ND	0.5	_	ND	0.42		ND		1.6	19	ND	0.44	18	ND		1.6 19		_	1.5 18
2-Propanol	TO-15 μg/m ³	92		12 22	0.9	_	ND	0.79		33		0.75		25	0.82	11	1		0.75 11	14	_	0.72 11
3-Chloropropene	TO-15 μg/m ³	ND		15 ND	3.0	_	ND	2.9		ND		1.4	14	ND	3.0	14	ND		1.4 14	-		1.4 14
4-Ethyltoluene	TO-15 μg/m ³	ND	1.2		1.3		5.7	1.1	1	ND			5.6	ND	1.1	5.5	ND		1.4 5.6	ND	_	1.4 5.4
4-Methyl-2-pentanone	TO-15 μg/m ³	ND	1.2		1.3			1.0		ND		0.70		ND	1.1	4.6			0.70 4.7			0.68 4.5
Acetone	TO-15 μg/m ³			29 32	3.			2.5	25			2.0	27	69	2.6				2.0 27			1.9 26
Acrolein	TO-15 μg/m ³		UJ 5F 1.7		UJ 5F 1.8	_			9.8				10	ND	UJ 5F 1.5			UJ 5F		ND	UJ 5F	3.0 10
Acrylonitrile	TO-15 μg/m ³		0.66		0.6	_	ND	0.57					9.9				ND		0.94 9.9			0.90 9.5
alpha-Chlorotoluene	TO-15 μg/m ³		0.58			1 6.8		0.50				0.48		ND			ND		0.48 5.9		_	0.46 5.7
Benzene	TO-15 μg/m ³		0.74			9 4.2		0.64				0.28		ND			ND		0.28 3.6		_	0.26 3.5
Bromodichloromethane	TO-15 μg/m ³		1.2			3 8.7					-		7.7	ND	1.1		ND		1.5 7.7		_	1.4 7.4
Bromoform	TO-15 μg/m ³		1.3		1.4			1.2		ND	-		12	ND	1.2				1.0 12		_	0.98 11
Bromomethane	TO-15 μg/m ³		2.1		2.:			1.8						ND	1.9		ND		2.0 44	_	_	1.9 43
Carbon Disulfide	TO-15 μg/m ³		1.5		1.0	_		1.3		+	_	3.3		ND	1.4	14			1	ND		3.2 14
Carbon Tetrachloride	TO-15 μg/m ³		2.0			2 8.2			6.7		_		7.2	ND		7.0			1.2 7.2		1	1.1 6.9
Chlorobenzene	TO-15 μg/m ³		0.52		0.5			0.45	_		-	0.46		ND	0.47				0.46 5.3	_	1	0.44 5.1
Chloroethane	TO-15 μg/m ³			13 ND	3.	_	ND	2.9		ND			12	ND	3.0	12			2.4 12		1	2.3 12
Chloroform	TO-15 μg/m ³		0.52		0.5		35	0.45				0.66		ND	0.47				0.66 5.6		1	0.64 5.4
Chloromethane	TO-15 μg/m ³		1.8			9 27		1.6				2.5		ND	1.6				2.5 24			2.4 23
cis-1,2-Dichloroethene	TO-15 μg/m ³		1.8			5.2			4.2			0.82		ND			ND		0.82 4.5	_		0.79 4.4
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	1.1	5.6 ND	1.	5.9	ND	0.94	4.8	ND		0.76	5.2	ND	0.98	5.1	ND		0.76 5.2	ND		0.73 5.0

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 20 of 37)

	Location ID	\	/W43A		VW43B			VW44A			VW44B	ı	VW45A			VW45B		T	VW46A		—
	Sampling Date/Time		/2021 12:10	(07/08/2021 12:45		08/	16/2021 09:53		(07/08/2021 17:46		07/08/2021 13:58		(07/08/2021 14:38			07/08/2021 15	5:38	
	Sample Depth (feet)	0.,00,	5.5	•	14.5		00,	5.5		•	14.5		5.5		Ì	14.5			5.5		
	Sample Type		N		N			N			N		N			N			N		
	Field Sample ID		VW43A-02		SG-VW43B-02			G-VW44A-03			SG-VW44B-02		SG-VW45A-03			SG-VW45B-02			SG-VW46A-		
	Lab Sample ID		7241A-01A		2107241A-02A			108390-02A			2107241A-08A		2107241A-03A			2107241A-04A			2107241A-0		
	Status	Vá	alidated		Validated			Validated			Validated		Validated			Validated			Validated		
Analyte	Method Units	Result QA	Reason MDL RL	Result	QA Reason MDL RL	Result	t Q/	A Reason MDL	RL I	Result	QA Reason MDL RL	Result	QA Reason MDL	RL	Result	QA Reason MD	RL	Resul	QA Reason	MDL	RL
Cumene	TO-15 μg/m³	ND	0.76 6.1	ND	0.81 6.4	1 ND		0.66	5.2	ND	0.72 5.6		0.69	_	ND	0.72		_		0.69	5.4
Cyclohexane	TO-15 μg/m ³	ND	0.70 4.2	ND	0.74 4.5	5 3.9		0.61	3.7	ND	0.84 3.9	ND	0.63	3.8	ND	0.84	3.9	ND		0.81	3.8
Dibromochloromethane	TO-15 μg/m ³	ND	1.8 10	ND	1.9 11	ND		1.6	9.1	ND	1.4 9.8	ND	1.6	9.5	ND	1.4	9.8	ND		1.3	9.4
Dibromomethane	TO-15 μg/m ³	ND	1.3 35	ND	1.4 37	' ND		1.2	30	ND	1.6 32	ND	1.2	32	ND	1.6	32	ND		1.5	31
Ethanol	TO-15 μg/m ³	24	2.9 23	ND	3.0 24	ND			20	ND	2.3 22		2.6		25	2.3	_	_		2.2	21
Ethyl Acetate	TO-15 μg/m ³	ND	1.0 18	ND	1.1 19				15	ND	4.7 16		0.94		ND	4.7	_	_			16
Ethylbenzene	TO-15 μg/m ³	ND	1.4 5.4	ND	1.5 5.7				4.6	ND	0.83 5.0		1.3		ND	0.83	5.0	ND		0.80	
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND	1.1 21	ND	1.1 22				18	ND	1.4 19		0.99		ND	1.4					18
Freon 11	TO-15 μg/m ³	ND	1.5 6.9	ND	1.6 7.3				6.0	ND	0.74 6.4	ND	1.3		ND	0.74	6.4	ND		0.71	
Freon 12	TO-15 μg/m ³	ND	0.96 6.1	ND	1.0 6.4				5.3	ND	1.0 5.7	ND	0.88		ND	1.0	_			0.98	
Freon 113	TO-15 μg/m ³	ND	1.5 9.5	ND	1.6 10				8.2	ND	1.4 8.8		1.4	8.6	ND	1.4	8.8	_			8.4
Freon 114	TO-15 μg/m ³	ND	1.5 8.6	ND	1.6 9.1	1 ND			7.5	ND	1.1 8.0	ND	1.4	7.8	ND	1.1	8.0			1.1	7.7
Freon 134a	TO-15 μg/m ³	ND	2.5 21	ND	2.7 22	_			18	ND	2.6 19	-	2.3	19	ND	2.6	_			2.5	18
Heptane	TO-15 μg/m ³	ND	1.2 5.1	ND	1.3 5.3				4.4	ND	0.84 4.7	ND	1.1	4.6	ND	0.84	_	ND		0.80	
Hexachlorobutadiene	TO-15 μg/m ³	ND	4.8 53	ND	5.1 56				46	ND	5.4 49	ND	4.4	48	ND	5.4	49			5.2	47
Hexachloroethane	TO-15 μg/m ³	ND	48 48	ND	50 50				41	ND	44 44	ND	43	43	ND	44	44			43	43
Hexane	TO-15 μg/m ³	ND	0.80 4.4	ND	0.84 4.6			0.69	3.8	ND	0.75 4.0	ND	0.72	3.9	ND	0.75	4.0	ND		0.72	
Iodomethane	TO-15 μg/m ³	ND	0.93 72	ND	0.99 76		U		62	ND	3.6 66		0.85		ND	3.6		_		3.5	64
Isopropyl ether	TO-15 μg/m ³	ND	0.61 21	ND	0.64 22	ND			18	ND	1.3 19	ND	0.55		ND	1.3				1.2	18
m- & p-Xylenes	TO-15 μg/m ³	ND	1.2 5.4	ND	1.3 5.7				4.6	ND	2.7 5.0	ND	1.1	4.9	ND	2.7	5.0	ND		1	4.8
Methyl tert-butyl ether	TO-15 μg/m ³	ND	0.96 18	ND	1.0 19	ND		0.83	15	ND	1.0 16	ND	0.87	16	ND	1.0	16	ND		0.97	16
Methylene Chloride	TO-15 μg/m ³	ND	0.88 43	ND	0.93 45	ND		0.76	37	ND	2.2 40	ND	0.80	39	ND	2.2	40	ND		2.2	38
Naphthalene	TO-15 μg/m ³	ND	5.0 13	ND	5.3 14	. ND		4.3	11	ND	0.78 12	ND	4.5	12	ND	0.78		ND		0.75	12
o-Xylene	TO-15 μg/m ³	ND	1.3 5.4	ND	1.4 5.7	7 20		1.2	4.6	ND	1.3 5.0	ND	1.2	4.9	ND	1.3	5.0	ND		1.3	4.8
Propylbenzene	TO-15 μg/m ³	ND	1.0 6.1	ND	1.1 6.4	1 ND			5.3	ND	0.31 5.6	ND	0.91		ND	0.3	5.6	ND		0.30	5.4
Propylene	TO-15 μg/m ³	10	0.63 8.5	ND	0.66 9.0) ND			7.4	ND	1.5 7.9	+	0.57		ND	1.5	_	ND			7.6
Styrene	TO-15 μg/m ³	ND	0.68 5.3	ND	0.72 5.6	6 ND		0.59	4.6	ND	0.57 4.9		0.62		ND		4.9	_		0.54	
tert-Amyl methyl ether	TO-15 μg/m ³		2.2 21		2.3 22	ND		1.9		ND	2.8 19		2.0		ND	2.8		ND			18
tert-Butyl alcohol		ND		ND	2.3 22 1.1 16	ND		0.90				ND		14				ND			13
Tetrachloroethene	TO-15 μg/m ³		1.4 8.4		1.4 8.8			1.2			1.4 7.8				9.2		_	20			7.5
Tetrahydrofuran	TO-15 μg/m ³		0.74 3.6		0.78 3.8			0.64			0.73 3.4				ND			ND		0.70	
Toluene	0		0.48 4.6		0.51 4.9			0.42			1.0 4.3				4.9			ND			4.1
TPH - Gasoline	TO-15 μg/m ³	ND	500 500		530 530)	440			470 470			460				ND		450	
trans-1,2-Dichloroethene		ND	1.3 4.9		1.3 5.2			1.1				ND		4.4	ND			ND			4.4
trans-1,3-Dichloropropene		ND		ND	1.0 5.9			0.84			0.71 5.2		0.88		ND			ND		0.69	
Trichloroethene	2	ND		ND	1.0 7.0			0.83		6.4	0.77 6.2			6.0			_	ND		0.74	_
Vinyl Acetate	2	ND		ND	5.0 18			4.1		ND		ND		16	ND			ND		3.0	
Vinyl Bromide	2	ND	1.5 22		1.6 23			1.3		ND	1.6 20			20				ND		1.6	
Vinyl Chloride	TO-15 μg/m ³	ND	0.80 3.2		0.84 3.3			0.69			1.2 2.9				ND			ND		1.1	

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 21 of 37)

	Location ID		VW46B				VW47A				VW47A				VW	47B			VW48A		I		VW48B				VW49A		
	Sampling Date/Time	(07/08/2021 16	3:08			07/08/2021 18:	54		(07/08/2021 1	8:54			07/08/20		27		07/09/2021 0				07/09/2021 0	7:45			07/09/2021 0		
	Sample Depth (feet)		14.5				5.5				5.5				14				5.5				14.5				5.5		
	Sample Type		N				N				FD				١	1			N				N				N		
	Field Sample ID		SG-VW46B-	02			SG-VW47A-02	2			SG-VW47A	-03			SG-VW	47B-02	<u> </u>		SG-VW48A	-03			SG-VW48B	-02			SG-VW49A	١-03	
	Lab Sample ID		2107241A-06	6A			2107241A-09A	4			2107241A-1	I0A			210724	1A-11A	١.		2107241A-1	12A			2107241A-	13A			2107241A-	14A	
	Status		Validated				Validated				Validated	1			Valid	ated			Validated	1			Validated	1			Validated	<u>d</u>	
Analyte	Method Units	Result	QA Reason	МП	l RI	Result	QA Reason M	иы І	RI	Result	QA Reason	МП	I RI	Result	QA Rea	ason I M	ıdı І	RI Result	QA Reason	Імпі	l RI	Result	OA Reason	Імпі	RI	Result	QA Reason	. Імп	l _{RI}
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	Q/ C Trodoon	1.1	29	ND	t		30	ND	G/T TTOGOOTI	1.1	30	ND	UJ 4D			30 ND	G/T TTOGGOTT	1.1	1	ND	Q/ C Troubbil	1.1	29	ND	G/ Trodoon	_	28
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.70	5.8	ND	 		5.9	ND				ND	UJ 4D		.72			0.69	1	ND		0.70				_	5.5
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.57	7.3	ND	t	.58	7.5	ND		0.58	_	ND	UJ 4D			7.5 ND		0.56		ND		0.57	7.3				7.0
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.79	5.8	ND	t		5.9	ND		0.81	5.9	ND	UJ 4D			5.9 ND		0.78	1 1	ND		0.79	+			0.89	
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.56	4.3	ND	l		4.4	ND		0.57	4.4	ND	UJ 4D			4.4 ND		0.55	1 1	ND		0.56	_	ND		0.86	
1,1-Dichloroethene	TO-15 μg/m ³	ND		0.88	4.2	ND	t		4.3	ND		0.90	4.3	ND	UJ 4D			4.3 ND		0.86	1 1	ND		0.88	_	ND		_	4.0
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.2	12	ND			12	ND		2.2	12	150	J- 4D			12 ND		2.1	11	24		2.2	12	ND		2.4	11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		2.0	26	ND			26	ND		2.0	26	ND	UJ 4D		_	26 ND		1.9	25	ND		2.0	26	ND		_	-
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		3.6	32	ND		_	32	ND		3.6	32	ND	UJ 4D			32 ND		3.5	31	ND		3.6		ND		_	
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		1.9	5.2	ND] :	2.0	5.4	ND		2.0	5.3	ND	UJ 4D	2	2.0	5.4 ND		1.9	5.1	ND		1.9	5.2	ND		0.58	5.0
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		4.0	41	ND		4.0	42	ND		4.0	42	ND	UJ 4D	4	1.0	42 ND		3.9	40	ND		4.0	41	ND		1.3	39
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		0.69	8.2	ND	0	.70	8.4	ND		0.70	8.3	ND	UJ 4D	0.	.70	8.4 ND		0.68	8.0	ND		0.69	8.2	ND		1.5	7.8
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.55	6.4	ND	0	.56	6.6	ND		0.56	6.5	ND	UJ 4D	0.	.56	6.6 ND		0.54	6.3	ND		0.55	6.4	ND		0.69	6.1
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.87	4.3	ND	0	.89	4.4	ND		0.88	4.4	ND	UJ 4D	0.	.89	4.4 ND		0.85	4.2	ND		0.87	4.3	ND		0.67	4.1
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 5A	1.6	4.9	ND	UJ 5A	1.7	5.0	ND	UJ 5A	1.7	5.0	ND	UJ 4D,	5A 1	1.7	5.0 ND	UJ 5A	1.6	4.8	ND	UJ 5A	1.6	4.9	ND	UJ 5A	1.1	4.7
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		0.81	5.2	ND	0	.83	5.4	ND		0.83	5.3	ND	UJ 4D	0.	.83	5.4 ND		0.80	5.1	ND		0.81	5.2	ND		1.0	5.0
1,3-Butadiene	TO-15 μg/m³	ND		0.78	2.4	ND	0	.80	2.4	ND		0.79	2.4	ND	UJ 4D	0.	.80	2.4 ND		0.76	2.3	ND		0.78	2.4	ND		0.65	2.2
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.82	6.4	ND	0	.84	6.6	ND		0.83	6.5	ND	UJ 4D	0.	.84	6.6 ND		0.80	6.3	ND		0.82	6.4	ND		0.70	6.1
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.41	6.4	ND	0	.42	6.6	ND		0.42	6.5	ND	UJ 4D	0.	.42	6.6 ND		0.41	6.3	ND		0.41	6.4	ND		0.72	6.1
1,4-Dioxane	TO-15 μg/m ³	80		0.76	15	ND	0	.78	16	ND		0.77	_	ND	UJ 4D			16 ND		0.75	_	ND		0.76	15	ND		_	_
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.38	5.0	ND	0	.39	5.1	ND		0.39	5.1	ND	UJ 4D		.39	5.1 ND		0.38	4.9	ND		0.38	5.0	ND		_	4.7
2-Butanone (Methyl Ethyl Ketone	, , , ,	ND		2.2	12	ND			13	ND		2.2	13	ND	UJ 4D			13 ND		2.2	12	ND		2.2	12	ND			
2-Hexanone	TO-15 μg/m ³	ND		1.5	17	ND	t		18	ND		1.5	18	ND	UJ 4D			18 ND		1.4	17	ND		1.5	17	ND		0.40	_
2-Propanol	TO-15 μg/m ³	ND		0.70	10	27	t		11	ND	UJ 3D	0.72		18	J- 4D			11 57		0.69	10	62		0.70	1	22		0.75	
3-Chloropropene	TO-15 μg/m ³	ND		1.4	13	ND		1.4	14	ND		1.4	14	ND	UJ 4D			14 ND		1.3	13	ND		1.4	13	ND		2.8	13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.3	5.2	ND	 		5.4	ND		1.4	5.3	ND	UJ 4D			5.4 ND		1.3	5.1	ND		1.3	5.2	ND		1.0	5.0
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		0.66	4.4	ND	t		4.5	ND		0.67	4.4	ND	UJ 4D			4.5 ND		0.64	_	ND		0.66	_	ND			4.2
Acetone	TO-15 μg/m ³	ND		1.8	25	46			26	35		1.8	26	29	J- 4D			26 64		1.8	25	260		1.8	25	54	 	2.4	
Acrolein	TO-15 μg/m ³	ND	UJ 5F	2.9				_	10	ND	UJ 5F	3.0	10	ND	UJ 4D,		3.0		UJ 5F			ND	UJ 5F		9.8		UJ 5F	_	9.3
Acrylonitrile	TO-15 μg/m ³	ND		0.88		ND		.90				_	9.4	ND	UJ 4D		.90			0.86		ND		_	_	ND	<u> </u>	_	8.8
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.44		ND		.45					5.6	ND	UJ 4D		.45			_	5.4					ND			5.2
Benzene	TO-15 μg/m ³	ND		0.26	3.4			.26					3.5	ND	UJ 4D		.26			0.25		ND			3.4				3.2
Bromodichloromethane Bromoform	TO-15 μg/m ³	ND		1.4	7.1	ND	t	1.4		ND			7.3	ND	UJ 4D		1.4			1.3	_	ND		1.4		ND			6.8
Bromoform Bromomothana	TO-15 μg/m ³ TO-15 μg/m ³	ND		0.95		ND	t	1.0		ND		0.97		ND	UJ 4D		.97			0.93		ND		0.95					10
Bromomethane Carbon Disulfido	TO-15 μg/m ³	ND 450		1.8	41	ND	t		42 14	ND		1.9	42	ND	UJ 4D		1.9			1.8		ND ND		1.8	_	ND	+	_	39 13
Carbon Disulfide	TO-15 μg/m TO-15 μg/m ³	150		3.1	13	ND	1			ND		3.2	14	ND	UJ 4D			14 ND		3.0	13	ND		3.1			+		6.4
Carbon Tetrachloride Chlorobenzene	TO-15 μg/m TO-15 μg/m ³	ND ND		1.1 0.43	6.7	ND ND		1.1		ND ND		1.1 0.44	6.8	ND 340	UJ 4D J- 4D		1.1 .44				6.6 4.8	ND		0.43	6.7 4.9		+	0.42	
Chloroethane	TO-15 μg/m ³	ND		2.3	4.9	ND			12	ND			5.0	ND	UJ 4D		2.3			2.2		ND		2.3	_	ND	+		11
Chloroform	TO-15 μg/m ³	7.9		0.62	5.2		t			ND		2.3 0.63		350	J- 4D		.63					140		0.62	1		+	_	5.0
Chloromethane	TO-15 μg/m ³			2.3		ND			5.3 22	ND			5.3		UJ 4D					0.60		ND	-	2.3			+	_	21
cis -1,2-Dichloroethene	TO-15 μg/m ³	ND		0.76	22					ND		2.4	4.3	ND ND	UJ 4D		.78			2.3		ND					-		4.0
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND						.78 .72					4.3				.78			0.75				0.76			+	0.89	
ois - 1,3-טוטווטוטpropene	10-15 μg/m ³	ND		0.70	4.8	ND		./2	4.9	ND		0.72	4.9	ND	UJ 4D	0.	.12	4.9 ND	I	0.69	4./	ND		0.70	4.8	ND		0.89	4.6

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 22 of 37)

	Location ID		VW46B				VW47A				VW47A				VW47B				VW48A			VW48B				VW49A	
	Sampling Date/Time	(07/08/2021 16	80:6			07/08/2021 18	3:54			07/08/2021 1	8:54			07/08/2021 1	9:27			07/09/2021 07:19			07/09/2021 07	45			07/09/2021 08	3:43
	Sample Depth (feet)		14.5				5.5				5.5				14.5				5.5			14.5				5.5	
	Sample Type		N				N				FD				N				N			N				N	
	Field Sample ID		SG-VW46B-0	02			SG-VW47A-	02			SG-VW47A	-03			SG-VW47B-	-02			SG-VW48A-03			SG-VW48B-0	2			SG-VW49A-	03
	Lab Sample ID		2107241A-06	6A			2107241A-0				2107241A-				2107241A-1				2107241A-12A			2107241A-13	Α			2107241A-1	
	Status		Validated				Validated				Validated	<u> </u>			Validated				Validated			Validated				Validated	
Analyte	Method Units	Pacult	QA Reason	MDI	Ιρι	Pacult	QA Reason	МП	Ы	Pacult	OA Beason	I MDL	l pı	Result	OA Beason	Імп	Ιы	Pacult	QA Reason MD	ГБ	Posult	QA Reason	MDI	Ιы	Pacult	I OA Passon	IMDLI BL
Cumene	TO-15 μg/m ³	ND		0.67	-	ND	QA Iteason	0.68	_	ND	QA NCason	0.68	_	ND	UJ 4D	0.68	_			5 5.1	-		0.67	+	5.5	QA (Cason	0.63 5.0
Cyclohexane	TO-15 μg/m ³	ND		0.79		ND		0.80		ND		0.80	1 1	ND	UJ 4D	0.80				7 3.6				3.7	ND		0.58 3.5
Dibromochloromethane	TO-15 μg/m ³	ND		1.3	9.1	ND		1.3	9.3	ND		1.3	1 1	ND	UJ 4D	1.3		1	1.2				1.3	9.1	ND		1.5 8.6
Dibromomethane	TO-15 μg/m ³	ND		1.5	30	ND		1.5	31	ND		1.5	31	ND	UJ 4D	1.5	+	ND	1.4		-		1.5	30	ND		1.1 29
Ethanol	TO-15 μg/m ³	ND		2.2	20	ND		2.2	20	ND		2.2	20	ND	UJ 4D	2.2		ND	2.1				2.2	20	ND		2.4 19
Ethyl Acetate	TO-15 μg/m ³	ND		4.4	15	ND		4.5	16	ND		4.5	16	ND	UJ 4D	4.5		ND	4.3	_			4.4	15	ND		0.86 15
Ethylbenzene	TO-15 μg/m ³	ND		0.77	4.6	ND		0.79	t t	ND		0.79	t t	ND	UJ 4D	0.79		ND	0.7				0.77	4.6	ND		1.2 4.4
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		1.3	18	ND		1.4	18	ND		1.4	18	ND	UJ 4D	1.4		-	1.3				1.3	18	ND		0.89 17
Freon 11	TO-15 μg/m ³	ND		0.69	_	ND		0.70	 	ND		0.70	1 1	ND	UJ 4D	0.70	_	ND	-	7 5.9			0.69	-	ND		1.2 5.7
Freon 12	TO-15 μg/m ³	ND		0.09		ND		0.70		ND		0.70	t t	ND	UJ 4D	0.70	_		 	3 5.2			0.09 0.95		ND		0.79 5.0
Freon 113	TO-15 μg/m ³	ND		1.3	8.2	ND		1.3		ND		1.3	t t	ND	UJ 4D	1.3	_	1		8.0	_		1.3	8.2	ND		1.2 7.8
Freon 114	TO-15 μg/m ³	ND		1.0	7.4	ND				ND		1.0	1 1	ND	UJ 4D	1.0				7.3			1.0	7.4	ND		1.3 7.1
Freon 134a	TO-15 μg/m ³	ND		2.4	18	ND		2.4	18	ND		2.4	18	ND	UJ 4D	2.4	_	1	2.4	_			2.4	18	ND		2.1 17
Heptane	TO-15 μg/m ³	ND		0.78	4.4	ND				ND		0.79	 	ND	UJ 4D	0.80				3 4.3			2. 4 0.78	_	ND		1.0 4.2
Hexachlorobutadiene		ND				ND				ND			4.4		UJ 4D			ND							ND		4.0 43
Hexachloroethane		ND		5.0	45 41			5.1	46	ND		5.1	 	ND	UJ 4D	5.1 42	_	ND	4.9				5.0	45 41	ND		
						ND		42	42 3.8			42	42	ND					†		-		41	+			
Hexane Iodomethane	TO-15 μg/m³ TO-15 μg/m³	ND ND		0.70 3.4	3.8 62	ND ND			63	ND ND		0.71 3.4	3.8 63	ND ND	UJ 4D UJ 4D	0.71 3.4		ND ND	3.3	3.7			0.70	3.8 62	ND ND		0.65 3.6 0.77 59
Isopropyl ether	TO-15 μg/m ³	ND		1.2		ND			18	ND			18	ND	UJ 4D			ND	1.2	_			3.4	18	ND		0.77 59
m- & p-Xylenes				2.5	18			1.2	4.7	ND		1.2	4.7	ND	UJ 4D	1.2 2.6		ND	2.5	_	-		1.2	4.6			
		ND			4.6	6.2		2.6	 			2.6	ł							_	-		2.5	1	ND		1.0 4.4
Methyl <i>tert</i> -butyl ether Methylene Chloride	TO-15 μg/m³ TO-15 μg/m³	ND ND		0.94	15 37	ND		0.96		ND		0.96	1 1	ND	UJ 4D	0.96		ND	0.9				0.94	15 37	ND		0.78 15
Naphthalene	TO-15 μg/m ³	ND		2.1 0.73	11	ND ND		2.2 0.74	38 11	ND ND		2.1 0.74	38 11	ND ND	UJ 4D UJ 4D	2.2 0.74		ND	2.1 0.7	_			2.1 0.73	+	ND ND		0.72 35 4.1 11
o-Xylene	TO-15 μg/m ³	ND		1.2	4.6	ND		1.3	4.7	ND		1.2	4.7	ND	UJ 4D	1.3		ND	1.2		+		0.73 1.2	4.6	ND		1.1 4.4
•						ND			1	ND		_	ł	ND	UJ 4D	0.30	_	ND			-			1	ND		
Propylbenzene Propylana		ND		0.29	5.2			0.30	5.4			0.30	t t		UJ 4D	1	1		0.2				0.29				0.83 5.0 0.52 7.0
Propylene		ND		1.4	7.3	ND		1.4	7.5	ND		1.4	7.5	ND		1.4	+		1.4				1.4	7.3	ND		
Styrene tert-Amyl methyl ether		ND ND		0.53 2.6	4.5 18	ND ND		0.54 2.6	4.6 18	ND ND		0.54 2.6	4.6 18	ND ND	UJ 4D UJ 4D	0.54 2.6		ND ND	0.5 2.5	_			0.53 2.6	4.5 18	ND ND		0.56 4.3 1.8 17
	TO-15 μg/m ³						1.20				111.20					1	+				-			_			
tert-Butyl alcohol Tetrachloroethene	TO-15 μg/m ³	ND		1.2		38	J 3D	1.2	13	ND	UJ 3D	1.2		ND	UJ 4D	1.2	_		1.2	13	_		1.2		ND 440		0.85 12
	TO-15 μg/m ³	10 ND			7.2	27				27		1.3		9.6	J- 4D	1.3								7.2			1.1 6.9
Tetrahydrofuran	TO-15 μg/m ³	ND			3.1	ND	<u> </u>	0.70		ND		0.69		ND	UJ 4D		3.2			7 3.1				3.1		+	0.60 3.0
Toluene	TO-15 μg/m ³	ND			4.0			0.99		ND		0.99		ND	UJ 4D	0.99				3.9				4.0			0.39 3.8
TPH - Gasoline	TO-15 μg/m ³ TO-15 μg/m ³	ND			440			440		ND ND			440	ND	UJ 4D	440				_	ND ND			440			420 420
trans-1,2-Dichloroethene		ND			4.2			1.8				1.8		ND	UJ 4D	1.8				4.1			1.8	_			1.0 4.0
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND			4.8			0.68		ND		0.68		ND	UJ 4D	0.68				5 4.7				4.8 5.7			0.80 4.6
Trichloroethene	TO-15 μg/m ³	ND			5.7		<u> </u>	0.74		ND		0.73		ND	UJ 4D	0.74				1 5.6						+	0.79 5.4
Vinyl Acetate	TO-15 μg/m ³	ND		3.0	15	ND		3.0		ND		3.0		ND	UJ 4D	3.0				15			3.0		ND		3.9 14
Vinyl Bromide	TO-15 μg/m ³	ND							19	ND		1.5		ND	UJ 4D	1.5				18			1.5		ND		1.2 18
Vinyl Chloride	TO-15 μg/m ³	ND		1.1	2.7	ND	<u> </u>	1.1	2.8	ND	<u> </u>	1.1	2.8	ND	UJ 4D	1.1	2.8	ND	1.0	2.7	' ND		1.1	2.7	ND		0.66 2.6

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 23 of 37)

	Location ID		VW49B				VW50A				VW50B				VW51A				VW51B				VW52A				VW52B		—
	Sampling Date/Time	(07/09/2021 09	9:09			07/09/2021 10	0:19			07/09/2021 1	0:47			07/12/2021 1				07/12/2021 13	3:42			07/13/2021 09	9:04			07/13/2021 0	9:34	
	Sample Depth (feet)		14.5				5.5				14.5				5.5				14.5				5.5				14.5		
	Sample Type		N				N				N				N				N				N				N		
	Field Sample ID		SG-VW49B-	02			SG-VW50A-	03			SG-VW50B-	-02			SG-VW51A	-02			SG-VW51B-	02			SG-VW52A-	02			SG-VW52B	-02	
	Lab Sample ID		2107241A-1	5A			2107241A-16	6A			2107241A-1	7A			2107260A-0)7A			2107260A-0	6A			2107282-07	Ά			2107282-08	3A	
	Status		Validated	'			Validated				Validated	'			Validated	d			Validated				Validated				Validated		
Analyte	Method Units	Result	QA Reason	МП	l _{RI}	Result	QA Reason	МП	RI	Result	QA Reason	Імпі	l RI	Result	I OA Reason	Імы	l _{RI}	Result	QA Reason	мп	RI	Result	QA Reason	MDI	RI	Result	QA Reason	МОГ	l RI
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	Q/ C Trodoon	1.5		ND	Q/ C TROGOGIT	1.5	29	ND	UJ 4D	1.5		ND	Q, t Ttodoon	1.2		ND	Q, t Ttodoon	1.1	30	ND	G/ C Trodoon	1.5	30	ND	G/T TTOGOON	_	28
1.1.1-Trichloroethane	TO-15 μg/m ³	ND		0.47				0.45		ND	UJ 4D		5.8	ND		0.76		ND		0.72		ND		0.46		ND		+	5.6
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.71	7.6	ND		0.68	7.2	ND	UJ 4D	_	7.3	ND		0.62		ND		0.58		ND		0.70	7.4	ND		0.66	
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.96	1	ND		0.92	5.8	ND	UJ 4D		5.8	ND		0.86	+	ND		0.81	5.9	ND		0.95		ND		0.90	
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.93	4.4	ND		0.89	4.3	ND	UJ 4D	0.89		ND		0.61	4.7	ND		0.58	1	ND		0.92	4.4	ND			4.2
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.4	4.4	ND		1.4	4.2	ND	UJ 4D	1.4	4.2	ND		0.96	4.6	ND		0.90	1	ND		1.4	4.3	ND		1.3	4.1
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.6	12	ND		2.5	11	530	J- 4D	2.5	11	ND		2.4	12	ND		2.2	12	ND		2.6	12	ND		2.4	11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.7	26	ND		1.6	25	ND	UJ 4D	1.6	26	ND		2.1	28	ND		2.0	26	ND		1.6	26	ND			25
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.9	33	ND		2.8	31	ND	UJ 4D	2.8	31	ND		3.9	34	ND		3.6	32	ND		2.8	32	ND		2.7	30
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		0.62	5.4	ND		0.60	5.2	ND	UJ 4D		5.2	ND		2.1	5.7	ND		2.0	5.4	ND		0.62	5.3	ND		0.58	5.1
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.4	42	ND		1.3	41	ND	UJ 4D	1.3	41	ND		4.3	45	ND		4.0	42	ND		1.4	42	ND		1.3	40
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.6	8.4	ND		1.6	8.1	ND	UJ 4D	1.6	8.1	ND		0.75	8.9	ND		0.70	8.4	ND		1.6	8.3	ND		1.5	7.9
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.75	6.6	ND		0.72	6.3	ND	UJ 4D	0.72	6.4	ND		0.60	7.0	ND		0.56	6.6	ND		0.74	6.5	ND		0.70	6.2
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.73	4.4	ND		0.70	4.3	ND	UJ 4D	0.70	4.3	ND		0.94	4.7	ND		0.89	4.4	ND		0.72	4.4	ND		0.68	4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND	UJ 5A	1.2	5.1	ND	UJ 5A	1.2	4.9	ND	UJ 4D	1.2	4.9	ND	UJ 5A	1.8	5.4	ND	UJ 5A	1.7	5.0	ND		1.2	5.0	ND		1.1	4.8
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.1	5.4	ND		1.1	5.2	ND	UJ 4D	1.1	5.2	ND		0.88	5.7	ND		0.83	5.4	ND		1.1	5.3	ND		1.0	5.1
1,3-Butadiene	TO-15 μg/m ³	ND		0.70	2.4	ND		0.67	2.3	ND	UJ 4D	0.68	2.3	ND		0.85	2.6	ND		0.80	2.4	ND		0.69	2.4	ND		0.66	2.3
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.76	6.6	ND		0.72	6.3	ND	UJ 4D	0.73	6.4	ND		0.89	7.0	ND		0.84	6.6	ND		0.74	6.5	ND		0.71	6.2
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.78	6.6	ND		0.75	6.3	ND	UJ 4D	0.76	6.4	ND		0.45	7.0	ND		0.42	6.6	ND		0.78	6.5	ND		0.74	6.2
1,4-Dioxane	TO-15 μg/m ³	ND		2.3	16	ND		2.2	15	ND	UJ 4D	2.2		ND		0.83	17	ND		0.78	16	ND		2.3	16	ND		2.2	15
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.60	5.1	ND		0.58	4.9	ND	UJ 4D		5.0	ND		0.42	5.4	ND		0.39	5.1	ND		0.60	5.1	ND		0.56	4.8
2-Butanone (Methyl Ethyl Ketone	, , , ,	ND		2.0	13	ND		1.9	12	ND	UJ 4D	1.9		ND		2.4	14	ND		2.3	13	ND		1.9	13	ND		1.8	12
2-Hexanone	TO-15 μg/m ³	ND		0.43	18	ND		0.42	17	ND	UJ 4D	0.42		ND		1.6	19	ND		1.5	18	ND		0.43	18	ND			17
2-Propanol	TO-15 μg/m ³	22		0.81	11	ND		0.78	10	ND	UJ 4D	0.78	1 -	12		0.76	1	ND		0.72	11	ND		0.80	11	ND	1	-	10
3-Chloropropene	TO-15 μg/m ³	ND		3.0	14	ND		2.9	13	ND	UJ 4D	2.9	13	ND		1.5	14	ND		1.4	14	ND		3.0	14	ND		2.8	13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.1	5.4	ND		1.0	5.2	ND	UJ 4D	1.0	5.2	ND		1.4	5.7	ND		1.4	5.4	ND		1.1	5.3	ND			5.1
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.1	4.5	ND		1.0	4.3	ND	UJ 4D	1.0		ND		0.71		ND		0.67	4.5	ND		1.0	4.4	ND			4.2
Acetone	TO-15 μg/m ³	40		2.6		ND		2.5	25	ND	UJ 4D	2.5	25	ND	 	2.0	28	30		1.9	26	53		2.6	26	31	 	2.4	24
Acrolein	TO-15 μg/m ³	ND	UJ 5F	1.5			UJ 5F		9.7	ND	UJ 4D,5F		9.7	ND	UJ 5F	3.2	_		UJ 5F	3.0		ND	UJ 5F	1.5		ND	UJ 5F	1.4	
Acrylonitrile	TO-15 μg/m ³	ND		0.58		ND		0.56			UJ 4D	_	9.2	ND	1	0.95	_				9.5	ND				ND	1	0.55	
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.51		ND		0.49			UJ 4D		5.5	ND			6.0				-	ND				ND		0.48	
Benzene	TO-15 μg/m ³	4.5		0.66				0.64		ND	UJ 4D		3.4	ND	-	0.28				0.26		ND				ND	1	0.62	
Bromodichloromethane	TO-15 μg/m ³	ND		1.1	-	ND		1.0		ND	UJ 4D		7.1	ND		1.5		ND			7.3	ND				ND		1.0	
Bromoform	TO-15 μg/m ³ TO-15 μg/m ³	ND		1.2	-	ND		1.1		ND	UJ 4D	1.2	_	ND		1.0	+			0.97		ND		1.2		ND		1.1	
Bromomethane Carbon Disulfide		ND		1.8	1	ND		1.8		ND	UJ 4D	1.8	_	ND		2.0	_			1.9		ND			42	ND	+	1.7	
Carbon Disulfide	TO-15 μg/m ³ TO-15 μg/m ³	ND		1.3	14	ND		1.3		ND	UJ 4D	1.3		ND		3.4		ND		3.2		ND ND		1.3	14	ND			
Carbon Tetrachloride Chlorobenzene	ТО-15 μg/m TO-15 μg/m ³	ND ND		1.8 0.46	_	ND ND			6.6	ND ND	UJ 4D	1.8 0.44		ND ND	1	0.47	+			0.44	6.8	ND ND				ND ND		1.7 0.43	
Chloroethane	TO-15 μg/m ³	ND		3.0	_	ND		0.44 2.9	11	ND	UJ 4D UJ 4D			ND		2.5				2.3		ND		2.9	11	ND	1	2.8	
Chloroform	TO-15 μg/m ³	32		0.46	_						J- 4D	2.9 0.44	_			0.67	+			0.63		18		0.45		33		0.43	
Chloromethane	TO-15 μg/m ³							1.5		18 ND	J- 4D UJ 4D		22	ND	1	2.5				2.4		ND		1.6		ND		1.5	
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.6	23			1.5		ND	UJ 4D	1.5		ND ND	+	0.83				0.78		ND ND				ND	1	1.5	
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND			4.4 5.0			0.92		ND			4.2		+		4.6 5.3			0.78		ND					1		
ors - 1,3-Dichloropropene	10-15 μg/m°	ND		0.96	5.0	ND		0.92	4.8	ND	UJ 4D	0.93	4.8	ND		U.//	5.3	ND		0.72	4.9	NΩ		0.95	4.9	ND		0.90	4./

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 24 of 37)

	Location ID	,	VW49B		VW50A		VW5	OB.			VW51A	T T	VW51B		VW	52A			VW52B	
	Sampling Date/Time		9/2021 09:09		07/09/2021 10:19		07/09/202			(07/12/2021 14:28		07/12/2021 13:42		07/13/20				07/13/2021 09:34	
	Sample Depth (feet)		14.5		5.5		14.				5.5		14.5		5.				14.5	
	Sample Type		N		N		N				N		N		N	l			N	
	Field Sample ID		-VW49B-02		SG-VW50A-03		SG-VW5				SG-VW51A-02		SG-VW51B-02		SG-VW				SG-VW52B-02	
	Lab Sample ID		7241A-15A		2107241A-16A		2107241				2107260A-07A		2107260A-06A		210728				2107282-08A	
	Status	ν	/alidated		Validated		Valida	ted			Validated		Validated		Valid	ated			Validated	
Analyte	Method Units	Result QA	Reason MDL RL	Result	QA Reason MDL RL	Result	QA Rea	son MDL	RL	Result	QA Reason MDL RL	Result	QA Reason MDL	RL	Result QA Rea	ason MDL	RL	Result	QA Reason MDL	L RL
Cumene	TO-15 μg/m³	14	0.68 5.4	ND	0.65 5.2	ND	UJ 4D	0.66	5.2	ND	0.73 5.7	ND	0.68	5.4	ND	0.67	5.3	ND	0.64	4 5.1
Cyclohexane	TO-15 μg/m ³	ND	0.62 3.8	ND	0.60 3.6	ND	UJ 4D	0.60	3.6	ND	0.86 4.0	ND	0.80	3.8	ND	0.61	3.7	ND	0.58	8 3.5
Dibromochloromethane	TO-15 μg/m ³	ND	1.6 9.4	ND	1.5 9.0	ND	UJ 4D	1.5	9.0	ND	1.4 9.9	ND	1.3	9.3	ND	1.6	9.2	ND	1.5	5 8.8
Dibromomethane	TO-15 μg/m ³	ND	1.2 31	ND	1.1 30	ND	UJ 4D	1.1	30	ND	1.6 33	ND	1.5	31	ND	1.2	31	ND	1.1	1 29
Ethanol	TO-15 μg/m ³	21	2.6 21	ND	2.5 20	ND	UJ 4D	2.5	20	ND	2.4 22	ND	2.2	20	ND	2.5	20	ND	2.4	1 19
Ethyl Acetate	TO-15 μg/m ³	ND	0.93 16	ND	0.89 15	ND	UJ 4D	0.89		ND	4.8 17		4.5		ND	0.92	-	ND	0.87	7 15
Ethylbenzene	TO-15 μg/m ³	ND	1.2 4.8	ND	1.2 4.6	+	UJ 4D	1.2	4.6	ND	0.84 5.0		0.79		ND	1.2		ND		
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND	0.97 18	ND	0.93 18	ND	UJ 4D	0.93		ND	1.4 19		1.4	18	ND	0.96		ND	0.91	
Freon 11	TO-15 μg/m ³	ND	1.3 6.2	ND	1.3 5.9		UJ 4D		6.0	ND	0.75 6.5		0.70	-	7.8		6.1	8.8		2 5.8
Freon 12	TO-15 μg/m ³	ND	0.86 5.4	ND	0.82 5.2	+	UJ 4D	0.83	-	ND	1.0 5.7		0.97		45	0.85	1	56		0 5.1
Freon 113	TO-15 μg/m ³	ND	1.3 8.4	ND	1.3 8.1	ND	UJ 4D	1.3	8.1	ND	1.4 8.9		1.3	8.4	ND	1.3	8.3	ND		2 7.9
Freon 114	TO-15 μg/m ³	ND	1.4 7.7	ND	1.3 7.4	ND	UJ 4D	1.3	7.4	ND	1.1 8.1	ND	1.0		ND	1.4	7.6	ND	1.3	
Freon 134a	TO-15 μg/m ³	ND	2.3 18	ND	2.2 18	ND	UJ 4D	2.2	18	ND	2.6 19	-	2.4	18	ND	2.2	18	ND	2.1	
Heptane	TO-15 μg/m ³	ND	1.1 4.5	ND	1.0 4.3		UJ 4D	1.0	4.3	ND	0.85 4.8	1	0.80		ND	1.1	4.4	ND	1.0	
Hexachlorobutadiene	TO-15 μg/m ³	ND	4.3 47	ND	4.1 45	ND	UJ 4D	4.1	45	ND	5.5 49		5.1	46	ND	4.2	46	ND	4.0	
Hexachloroethane	TO-15 μg/m ³	ND	43 43	ND	41 41	ND	UJ 4D	41	41	ND	45 45		42	42	ND	42	42	ND	40	
Hexane	TO-15 μg/m ³	ND	0.71 3.9	ND	0.68 3.7	ND	UJ 4D			ND	0.76 4.1	ND	0.71	3.8	ND	0.70		ND		6 3.6
Iodomethane	TO-15 μg/m ³	ND	0.83 64	ND	0.80 61	ND	UJ 4D	0.80		ND	3.7 67	1	3.4	63	ND	0.82		ND		8 60
Isopropyl ether	TO-15 μg/m ³	ND	0.54 18	ND	0.52 18	ND	UJ 4D	0.52	-	ND	1.3 19	ND	1.2	18	ND	0.52	1	ND	0.51	_
m- & p-Xylenes	TO-15 μg/m ³	ND	1.1 4.8	ND	1.0 4.6	ND	UJ 4D	1.1	4.6	ND	2.8 5.0	1	2.6	4.7	ND	1.1	4.7	ND	1.0	
Methyl <i>tert</i> -butyl ether	TO-15 μg/m ³	ND	0.85 16	ND	0.82 15	ND	UJ 4D	0.82	15	ND	1.0 17	ND	0.96	16	ND	0.84	16	ND	0.80	_
Methylene Chloride	TO-15 μg/m ³	ND	0.79 38	ND	0.75 37	ND	UJ 4D	0.02		ND	2.3 40		2.2	38	ND	0.78		ND	0.74	
Naphthalene	TO-15 μg/m ³	ND	4.4 12	ND	4.3 11	ND	UJ 4D	4.3	11	ND	0.79 12		0.74		ND	4.4	11	ND	4.2	
o-Xylene	TO-15 μg/m ³	ND	1.2 4.8	ND	1.1 4.6		UJ 4D	1.1	4.6	ND	1.3 5.0		1.3	4.7	ND ND	1.2	4.7	ND	1.1	
Propylbenzene	TO-15 μg/m ³	ND	0.90 5.4	ND	0.86 5.2	1	UJ 4D	0.86	-	ND	0.32 5.7	1	0.30		ND	0.88		ND		4 5.1
Propylene	TO-15 μg/m ³	ND	0.56 7.6	ND	0.54 7.3		UJ 4D	0.54		ND	1.5 8.0	_	1.4	1	ND	0.55	-	ND		2 7.1
Styrene	TO-15 μg/m ³	ND	0.61 4.7	ND	0.58 4.5	1	UJ 4D	0.54		ND	0.58 4.9		0.54		ND ND	0.60		ND		7 4.4
tert-Amyl methyl ether	TO-15 μg/m ³			ND	1.8 18	ND	UJ 4D		18		2.8 19		2.6		ND ND			ND		3 17
tert-Butyl alcohol	TO-15 μg/m ³		0.92 13		0.88 13				13			ND		13				ND		6 12
Tetrachloroethene	2	21	1.2 7.5				UJ 4D							7.4				170		1 7.0
	2	93			1.2 7.2		J- 4D		7.2		1.4 7.9 0.74 3.4			3.2				ND		
Tetrahydrofuran	2	ND	0.66 3.2		0.63 3.1		UJ 4D		3.1 4.0									ND ND		1 3.0
Toluene		ND	0.43 4.1		0.41 4.0		UJ 4D		4.0		1.0 4.4		0.99		ND			ND ND		0 3.9
TPH - Gasoline			450 450		430 430		UJ 4D				470 470				ND		_			0 420
trans-1,2-Dichloroethene		ND	1.1 4.4		1.1 4.2	+	UJ 4D		4.2		1.9 4.6			4.3	ND		_	ND		4.1
trans-1,3-Dichloropropene		ND	0.87 5.0		0.83 4.8	+	UJ 4D		4.8		0.72 5.3		0.68		ND		-	ND		1 4.7
Trichloroethene	. 0	ND		ND	0.82 5.7		UJ 4D		5.7		0.78 6.2		0.74		ND			ND		0 5.5
Vinyl Acetate	TO-15 μg/m ³	ND	4.2 15		4.0 15	1	UJ 4D		-	ND		ND			ND			ND		9 14
Vinyl Bromide	TO-15 μg/m ³	ND		ND	1.3 18	1	UJ 4D		_	ND	1.6 20				ND			ND		2 18
Vinyl Chloride	TO-15 μg/m ³	ND	0.71 2.8	ND	0.68 2.7	ND	UJ 4D	0.68	2.7	ND	1.2 3.0	ND	1.1	2.8	ND	0.70	2.8	ND	0.66	6 2.6

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 25 of 37)

	Location ID		VW53A				VW53B				VW54E)			VW55A	ī	VW55B			VW56A			l	VW56B		
	Sampling Date/Time	(07/13/2021 10).53			07/13/2021 1	1:30			07/14/2021				08/17/2021 06:34		07/14/2021 14:40			07/14/2021				07/14/2021 0		
	Sample Depth (feet)		5.5				14.5	1.00			14.5	00.00			5.5		14.5			5.5	00.10			14.5		
	Sample Type		N				N				N				N		N			N				N		
	Field Sample ID		SG-VW53A-0	03			SG-VW53B	-02			SG-VW54E	3-02			SG-VW55A-03		SG-VW55B-02			SG-VW56	۹-02			SG-VW56B-	-02	
	Lab Sample ID		2107282-09	Α			2107282-1	0A			2107284-	I9A			2108390-12A		2107284-16A			2107284-0)3A			2107284-02	2A	
	Status		Validated				Validated	d			Validate	d			Validated		Validated			Validate	d			Validated	<u> </u>	
Anglida	Mothad Unita	Daguit I	QA Reason	MDI	Lou	Daguit I	QA Reason	MDL	l ni	Daguit	QA Reason	LMDI	RL	Desuit	QA Reason MDL RL	Desuit	LOA Bassan LAAD	a I r	Dee.	ut I OA Bassa	. Lwbi	Lou	Daguit	t QA Reason	Тип	Lou
Analyte 1,1,1,2-Tetrachloroethane	Method Units TO-15 μg/m ³	Result ND	QA Reason	1.5	30	ND	R 4D	29	RL 570	Result ND	QA Reason	1.1	31	ND	1.4 28	ND	QA Reason MD	_	29 NI	_	1.1			QA Reason		29
1.1.1-Trichloroethane	TO-15 μg/m ³	ND		0.47		ND	R 4D	8.9	110	ND		0.74		ND	0.43 5.5	-	0.7	_	5.8 NI		0.70	-	1		0.69	
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.70		ND	R 4D	13	140	ND		0.60		ND	0.65 6.9	ND	0.5	_	7.3 NI		0.56		1	+	0.56	
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.96	6.0	ND	R 4D	18	110	ND		0.84		ND	0.88 5.5	ND	0.8		5.8 NI		0.78	-	1	+	0.78	_
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.92	4.4	ND	R 4D	18	85	ND		0.59		ND	0.85 4.1	ND	0.5	_	1.3 NI	+	0.56		1	+	0.55	-
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.4	4.3	ND	R 4D	27	83	ND		0.93		ND	1.3 4.0		0.8	_	1.2 NI		0.87		-	+	0.87	+
1.1-Difluoroethane	TO-15 μg/m ³	ND		2.6		21,000	J- 4D	50	220	ND		2.3		ND	2.4 11	ND	2.2	_	12 NI		2.2	_	ND		2.2	
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.6	26	ND	R 4D	32	500	ND		2.1	27	ND	1.5 24	ND	2.0		26 NI		1.9			+		25
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.9	32	ND	R 4D	55	620	ND		3.8	_	ND	2.6 30		3.6	_	32 NI		3.5	_	ND	1	_	31
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		0.62		ND	R 4D	12	100	ND		2.0		10	0.57 5.0	+	1.9	_	5.2 NI	+	1.9			1		5.2
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.4	42	ND	R 4D	26	810	ND		4.2		ND	1.3 39	1	4.0	_	41 NI		3.9	_				40
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.6	8.4	ND	R 4D	31	160	ND			8.6	ND	1.5 7.8	1	0.6		3.2 NI)	0.68		ND		0.68	
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.74	6.6	ND	R 4D	14	120	ND			6.8	ND	0.68 6.1	ND	0.5	_	6.4 NI)	0.54	6.3	ND		0.54	6.3
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.73	4.4	ND	R 4D	14	84	ND		0.91	4.6	ND	0.67 4.1	ND	0.8	7 4	1.3 NI)	0.86	4.3	ND		0.85	4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.2	5.1	ND	R 4D	23	96	ND	UJ 5A	1.7	5.2	ND	1.1 4.7	ND	UJ 5A 1.7	7 4	1.9 NI	UJ 5A	1.6	4.9	ND	UJ 5A	1.6	4.8
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.1	5.4	ND	R 4D	21	100	ND		0.86	5.5	ND	1.0 5.0	ND	0.8	2 5	5.3 NI)	0.80	5.2	6.2		0.80	5.2
1,3-Butadiene	TO-15 μg/m ³	ND		0.70	2.4	ND	R 4D	13	46	ND		0.82	2.5	ND	0.64 2.2	ND	0.7	8 2	2.4 NI		0.77	2.3	ND		0.77	2.3
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.75	6.6	ND	R 4D	14	120	ND		0.86	6.8	ND	0.69 6.1	ND	0.8	2 6	6.4 NI)	0.81	6.3	ND		0.81	6.3
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.78	6.6	ND	R 4D	15	120	ND		0.44	6.8	ND	0.72 6.1	ND	0.4	2 6	6.4 NI)	0.41	6.3	ND		0.41	6.3
1,4-Dioxane	TO-15 μg/m ³	ND		2.3	16	ND	R 4D	44	300	ND		0.80	16	ND	2.1 14	ND	0.7	6	15 NI)	0.75	15	ND		0.75	15
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.60	5.1	ND	R 4D	11	98	ND		0.41	5.2	ND	0.55 4.7	ND	0.3	9 5	5.0 NI)	0.38	4.9	ND		0.38	4.9
2-Butanone (Methyl Ethyl Ketone	e) TO-15 μg/m ³	26		2.0	13	ND	R 4D	37	250	ND		2.3	13	ND	1.8 12	ND	2.2	2	13 NI)	2.2	12	ND		2.2	12
2-Hexanone	TO-15 μg/m ³	ND		0.43	18	ND	R 4D	8.2	340	ND		1.6	18	ND	0.40 16	ND	1.5	5	18 NI)	1.5	17	ND		1.5	17
2-Propanol	TO-15 μg/m ³	ND		0.81	11	ND	R 4D	15	200	ND		0.74	11	ND	0.74 9.9	ND	0.7	0	10 NI)	0.70	10	ND		0.69	10
3-Chloropropene	TO-15 μg/m ³	ND		3.0	14	ND	R 4D	57	260	ND		1.4		ND	2.8 13	ND	1.4	1	13 NI)	1.3	13	ND		1.3	
4-Ethyltoluene	TO-15 μg/m ³	ND		1.1	5.4	ND	R 4D	21	100	ND		1.4	5.5	10	1.0 5.0		1.3	_	5.3 NI)	1.3	5.2	7.2		_	5.2
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.1	4.5	ND	R 4D	20	86	ND		0.69		ND	0.98 4.1	ND	0.6	_	1.4 NI		0.65	_				4.3
Acetone	TO-15 μg/m ³	160		2.6	26	ND	R 4D	49	500	ND		1.9		ND	2.4 24		1.8	_	25 NI		1.8		ND		1.8	
Acrolein	TO-15 μg/m ³	ND	UJ 5F	1.5		ND	R 4D,5F	29	190	ND	UJ 5F	3.1	_	ND	UJ 5F 1.4 9.3	_) (9.7		UJ 5F	_	9.6
Acrylonitrile	TO-15 μg/m ³	ND			9.5		R 4D	11	180	ND		_	9.8	ND	0.54 8.8	+		8 9			_	9.2	4		0.86	_
alpha-Chlorotoluene	TO-15 μg/m ³	ND			5.7		R 4D	9.7	110	ND			5.8		0.47 5.2				5.5 NI				ND	 	0.44	
Benzene	TO-15 μg/m ³	7.4		0.66		ND	R 4D	13	67	ND			3.6	3.2	0.61 3.2	+		6 3			0.25			 	0.25	
Bromodichloromethane	TO-15 μg/m ³	ND		1.1	7.3	ND	R 4D	21	140	ND		1.4	_	ND	1.0 6.8	1			7.2 NI		1.4	-	-	+		7.0
Bromoform	TO-15 μg/m ³	ND		1.2	11	ND	R 4D	23	220	ND		1.0		ND	1.1 10	_	0.9	_	11 NI		0.94	_	-		0.94	
Bromomethane	TO-15 μg/m ³	ND		1.8	42	ND	R 4D	35	810	ND		2.0	_	ND	1.7 39	+	1.9	_	42 NI		1.8	_	-			41
Carbon Disulfide	TO-15 μg/m ³	ND		1.3	14	ND	R 4D	25	260	ND		3.3		ND		ND	3.1		13 NI		3.1		1	+		13
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.8	6.9	ND	R 4D	35	130	ND		1.2		ND	1.7 6.4	_	1.1		6.7 NI			6.6		+		6.6
Chlorosthana	TO-15 μg/m ³	ND		0.46		ND	R 4D	8.7	96	ND		0.45		ND	0.42 4.6	_		3 4			_	4.8			0.42	
Chloroethane	TO-15 μg/m ³	ND		3.0	12	ND	R 4D	57	220	ND		2.4		ND	2.7 11	-	2.3	_	11 NI		2.2	_	!		2.2	1
Chloroform	TO-15 μg/m ³	ND		0.46		ND	R 4D	8.7	100	ND		0.65		ND	0.42 4.9	1		2 5			0.61		+	+	0.61	-
Chloromethane	TO-15 μg/m ³	ND		1.6	23	ND	R 4D	30	430	ND		2.5		ND	1.5 21		2.3		22 NI		2.3				2.3	
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.6	4.3	ND	R 4D	30	83	ND		0.80	_	ND	1.4 4.0	+		6 4					ND		0.75	
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.96	5.0	ND	R 4D	18	95	ND		0.74	5.1	ND	0.89 4.6	ND	0.7	1 4	1.8 NI)	0.70	4.8	ND		0.69	4.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 26 of 37)

	Location ID		VW53A				VW53B				VW54B				VW55A				VW55B			VW56A	\	T		VW56B		$\overline{}$
	Sampling Date/Time	(07/13/2021 10	0:53			07/13/2021 1	1:30			07/14/2021 0	8:58			08/17/2021 0	6:34			07/14/2021 14:40			07/14/2021 (08:13		(07/14/2021 0	7:42	,
	Sample Depth (feet)		5.5				14.5				14.5				5.5				14.5			5.5				14.5		,
	Sample Type		N				N				N				N				N			N				N		•
	Field Sample ID		SG-VW53A-				SG-VW53B				SG-VW54B				SG-VW55A				SG-VW55B-02			SG-VW56A				SG-VW56B		•
	Lab Sample ID		2107282-09				2107282-1				2107284-19				2108390-12				2107284-16A			2107284-0				2107284-02		,
	Status		Validated				Validated	<u> </u>			Validated				Validated	1			Validated			Validate	d	-		Validated		
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason MDI	. RL	Result	QA Reasor	n MDL I	RL F	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m ³	ND		0.68	5.4	ND	R 4D	13	100	ND		0.71	5.5	ND		0.62	5.0	ND	0.67	5.2	ND		0.66	5.2	ND		0.66	5.2
Cyclohexane	TO-15 μg/m ³	ND		0.62	3.8	ND	R 4D	12	72	ND		0.83	3.9	5.4		0.57	3.5	ND	0.79	3.7	ND		0.78	3.6	ND		0.78	3.6
Dibromochloromethane	TO-15 μg/m ³	ND		1.6	9.3	ND	R 4D	30	180	ND		1.3	9.6	ND		1.5	8.6	ND	1.3	9.1	ND		1.2	9.0	ND		1.2	8.9
Dibromomethane	TO-15 μg/m ³	ND		1.2	31	ND	R 4D	23	590	ND		1.6	32	ND		1.1	29	ND	1.5	30	ND		1.4	30	ND		1.4	30
Ethanol	TO-15 μg/m ³	ND		2.6	21	ND	R 4D	49	390	ND		2.3	21	36		2.4	19	ND	2.2	20	ND	UJ 2A-	2.2	20	ND	UJ 2A-	2.1	20
Ethyl Acetate	TO-15 μg/m ³	ND		0.92	16	ND	R 4D	18	300	ND		4.6	16	ND		0.85	14	ND	4.4	15	ND		4.3	15	ND		4.3	15
Ethylbenzene	TO-15 μg/m ³	ND		1.2	4.8	ND	R 4D	24	91	ND		0.82	4.9	10		1.1	4.4	ND	0.78	4.6	ND		0.77	1.6	ND		0.76	4.6
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		0.96	18	ND	R 4D	18	350	ND		1.4	19	ND		0.89	17	ND	1.3	18	ND		1.3	18	ND		1.3	18
Freon 11	TO-15 μg/m ³	ND		1.3	6.2	ND	R 4D	25	120	ND		0.72	6.3	ND		1.2	5.7	ND	0.69	6.0	ND		0.68	5.9	ND		0.68	5.9
Freon 12	TO-15 μg/m ³	24		0.86	5.4	ND	R 4D	16	100	29		1.0	5.6	ND		0.79	5.0	ND	0.96	5.3	ND		0.94	5.2	ND		0.94	5.2
Freon 113	TO-15 μg/m ³	ND		1.3	8.4	ND	R 4D	26	160	ND		1.4	8.6	ND		1.2		ND	1.3						ND		1.3	8.0
Freon 114	TO-15 μg/m ³	ND		1.4	7.6	ND	R 4D	26	150	ND		1.1	7.9	ND		1.2	7.1	ND	1.0	7.5	ND		1.0	7.4	ND		1.0	7.3
Freon 134a	TO-15 μg/m ³	ND		2.2	18	ND	R 4D	43	350	ND		2.5	19	ND		2.1	17	ND	2.4				2.4	18	ND		2.4	18
Heptane	TO-15 μg/m ³	ND		1.1	4.5	ND	R 4D	20	86	ND		0.82	4.6	ND		0.99	4.1	ND	0.78	4.4	ND		0.77	1.3	ND		0.77	4.3
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.3	47	ND	R 4D	82	890	ND		5.3	48	ND		4.0	43	ND	5.0		ND			45	ND		5.0	45
Hexachloroethane	TO-15 μg/m ³	ND		42	42	ND	R 4D	810	810	ND		44	44	ND		39	39	ND	41	41	ND			41	ND		41	41
Hexane	TO-15 μg/m ³	ND		0.70	3.8	ND	R 4D	13	74	ND		0.74	4.0	670		0.65	3.6	ND	0.70	3.8	ND		0.69	3.7	ND		0.69	3.7
Iodomethane	TO-15 μg/m ³	ND		0.83	64	ND	R 4D	16	1,200	ND		3.6	65	ND	UJ 5A	0.76	59	ND	3.4	62	ND			61	ND		3.3	61
Isopropyl ether	TO-15 μg/m ³	ND		0.54	18	ND	R 4D	10	350	ND		1.3	19	ND		0.50	17	ND	1.2	18	ND		1.2	18	ND		1.2	18
m- & p-Xylenes	TO-15 μg/m ³	ND		1.1	4.8	ND	R 4D	21	91	ND		2.7	4.9	40		1.0	4.4	ND	2.5		ND		2.5	1.6	8.6		2.5	4.6
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.85	16	ND	R 4D	16	300	ND		0.99	16	ND		0.78	14	ND	0.94	15	ND		0.93	15	ND		0.93	15
Methylene Chloride	TO-15 μg/m ³	ND		0.78	38	ND	R 4D	15	730	ND		2.2	39	ND		0.72	35	ND	2.1	37	ND				ND		2.1	36
Naphthalene	TO-15 μg/m ³	ND		4.4	11	ND	R 4D	84	220	ND		0.77		ND		4.1	10	ND	0.73	11	ND	UJ 5B-		11	11	J- 5B-	0.72	11
o-Xylene	TO-15 μg/m ³	ND		1.2	4.8	ND	R 4D	23	91	ND		1.3	4.9	14		1.1	4.4	ND	1.2		ND			1.6	ND		1.2	4.6
Propylbenzene	TO-15 μg/m ³	ND		0.89	5.4	ND	R 4D	17	100	ND		0.31	5.5	ND		0.82	5.0	ND	0.29	5.3	ND			5.2	ND		0.29	5.2
Propylene	TO-15 μg/m ³	ND		0.56	7.5	ND	R 4D	11	140	ND		1.5	7.7	ND		0.51	7.0	ND	1.4					7.3	ND		1.4	7.2
Styrene	TO-15 μg/m ³	ND		0.60	4.7	ND	R 4D	12	89	ND		0.56	4.8	ND		0.56	4.3	ND	0.53		ND			1.5	ND		0.52	4.5
tert-Amyl methyl ether	TO-15 μg/m ³			1.9	18	ND	R 4D	37	350	ND		2.7	19	ND		1.8	17	ND	2.6					18	ND		2.5	18
tert-Butyl alcohol	TO-15 μg/m ³	26		0.92	13	ND	R 4D	18	250	ND	1	1.2	14	ND		0.85	12	ND	1.2	13	ND			13	ND		1.2	13
Tetrachloroethene	TO-15 μg/m ³	91		1.2		ND	R 4D	23	140	46	1	1.4		ND				9.1		7.2			1.3				1.3	
Tetrahydrofuran	TO-15 μg/m ³	ND		0.65		ND	R 4D	12	62	ND			3.3					ND		_	ND		0.67				0.67	_
Toluene	TO-15 μg/m ³			0.42		ND	R 4D	8.1	79	ND	1	1.0		32			3.8				ND		0.96				0.96	
TPH - Gasoline	TO-15 μg/m ³				450	ND	R 4D		8,500					1,300				ND) ND		430 4					430
trans-1,2-Dichloroethene	TO-15 μg/m ³				4.3	ND	R 4D	21	83	ND		1.8		ND			4.0				ND		1.7					4.2
trans-1,3-Dichloropropene	TO-15 μg/m ³			0.86		ND	R 4D	16	95	ND			5.1	ND		_	4.6			4.8			0.66				0.66	
Trichloroethene	TO-15 μg/m ³			0.85		ND	R 4D	16	110	ND	1		6.0	ND		0.78				_	ND		0.71 5				0.71	
Vinyl Acetate	TO-15 μg/m ³	ND		4.2	15	ND	R 4D	80	290	ND		3.1	16	ND		3.8		ND	3.0		ND				ND		2.9	
Vinyl Bromide	TO-15 μg/m ³			1.3	19	ND	R 4D	25	360	ND	1	1.6		ND			18	ND		_	ND		1.5				1.5	
Vinyl Chloride	TO-15 μg/m ³			0.71	-	ND	R 4D	13	53	ND		1.1	2.9				2.6				ND		1.1 2				1.0	

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 27 of 37)

	Location ID		VW57A				VW57B				VW57B			VW58A			VW58B		1		VW59A				VW59B	
	Sampling Date/Time	(07/14/2021 07:0	7		(07/13/2021 12	2:52			07/13/2021 1	2:52		08/16/2021 1	1:13		08/16/2021 11	1:38		0	8/17/2021 10):16			08/17/2021 1	0:43
	Sample Depth (feet)		5.5				14.5				14.5			5.5			14.5				5.5				14.5	
	Sample Type		N				N				FD			N			N				N				N	
	Field Sample ID		SG-VW57A-02				SG-VW57B-	04			SG-VW57B	-05		SG-VW58A	-02		SG-VW58B-	02			SG-VW59A-	02			SG-VW59B	
	Lab Sample ID		2107284-01A				2107260A-23	3A			2107260A-2			2108390-0			2108390-05				2108390-18	Α			2108390-1	
	Status		Validated				Validated				Validated	1		Validated	1		Validated				Validated				Validated	<u> </u>
Analyte	Method Units	Result	QA Reason M	пΙ	RI R	Result	QA Reason	мы І	RI	Result	QA Reason	IMDLI RI	Result	I OA Reason	IMDLI F	RI Resu	t QA Reason	мы І	RI	Result	OA Reason	MDI	RI	Result	OA Reason	MDL F
1.1.1.2-Tetrachloroethane	TO-15 μg/m ³	ND		-+		ND	Q, t Ttodoon	1.2	32	ND	Q/ Trodoon	1.6 31	ND	Q/ C Trodoon		30 ND	C Q/C (COCCO)	1.4	28	ND	Q/ C Trodoon	1.4	28	ND	Q/ Trodoon	1.4
1,1,1-Trichloroethane	TO-15 μg/m ³	ND				ND			6.4	ND		0.48 6.2	ND			3.0 ND		0.44	5.6	ND		0.43	5.5	ND		0.45 5
1.1.2.2-Tetrachloroethane	TO-15 μg/m ³	ND		55		ND			8.0	ND		0.73 7.8	ND			.5 ND		0.66	7 1	ND		0.65	6.9	ND		0.68 7
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		-+		ND			6.4	ND		0.99 6.2	ND			3.0 ND		0.90	5.6	ND		0.88	5.5	ND		0.92 5
1,1-Dichloroethane	TO-15 μg/m ³	ND		55		ND		0.62	4.7	ND		0.95 4.6	ND			1.4 ND		0.87	4.2	ND		0.85	4.1	ND		0.89 4
1,1-Dichloroethene	TO-15 μg/m ³	ND		_		ND		0.96	4.6	ND		1.5 4.5	ND		1	.3 ND		1.3	4.1	ND		1.3	4.0	ND		1.4 4
1,1-Difluoroethane	TO-15 μg/m ³	ND		.1	11	15		2.4	12	ND		2.7 12	ND			12 ND		2.4	11	ND		2.4	11	ND		2.5
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		.9		ND		2.1	28	ND		1.7 27	ND			26 ND	1	1.6	25	ND		1.5	24	ND		1.6
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		.4		ND		3.9	34	ND		3.0 34	ND	1		32 ND		2.7	30	ND		2.6	30	ND		2.7
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND				ND			5.7	ND		0.64 5.6	ND	1		5.4 ND	1	0.58	5.1	ND		0.57	5.0	ND	<u> </u>	0.60 5
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		.8		ND		4.3	45	ND		1.4 44	ND			12 ND		1.3	40	ND		1.3	39	ND		1.3
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND				ND		0.75		ND		1.7 8.7	ND			3.4 ND		1.5		ND		1.5	7.8	ND		1.6
1,2-Dichlorobenzene	TO-15 μg/m ³	ND				ND		0.60		ND		0.77 6.8	ND			6.6 ND				ND		0.68	6.1	ND		0.71 6
1,2-Dichloroethane	TO-15 μg/m ³	ND		84	4.2	ND		0.95		ND		0.75 4.6	ND			.4 ND			4.2	ND		0.67	4.1	ND		0.70 4
1,2-Dichloropropane	TO-15 μg/m ³	ND		.6		ND	UJ 5A		5.4	ND		1.2 5.2	ND		1.2 5	5.1 ND		1.1	4.8	ND		1.1	4.7	ND		1.2 4
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		79		ND		0.89		ND		1.2 5.6	ND			5.4 ND		1.0	5.1	ND		1.0	5.0	ND		1.1 5
1,3-Butadiene	TO-15 μg/m ³	ND				ND		0.85		ND		0.72 2.5	ND		0.70 2	2.4 ND		0.66	2.3	ND		0.64	2.2	ND		0.67 2
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	0.	80	6.2	ND		0.90		ND		0.78 6.8	ND		0.75 6	6.6 ND			6.2	ND		0.69	6.1	ND		0.72
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	0.	40	6.2	ND		0.45	7.0	ND		0.81 6.8	ND		0.78 6	6.6 ND		0.74	6.2	ND		0.72	6.1	ND		0.75
1,4-Dioxane	TO-15 μg/m ³	ND	0.	74	15	ND		0.83	17	ND		2.4 16	ND		2.3 1	16 ND		2.2	15	ND		2.1	14	ND		2.2
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	0.	37	4.8	ND		0.42	5.4	ND		0.62 5.3	ND		0.60 5	5.1 ND		0.56	4.8	ND		0.55	4.7	ND		0.58 4
2-Butanone (Methyl Ethyl Ketone		ND	2	.2	12	ND		2.4	14	ND		2.0 13	ND		2.0 1	13 ND		1.8	12	ND		1.8	12	ND		1.9
2-Hexanone	TO-15 μg/m ³	ND	1	.4	17	ND		1.6	19	ND		0.44 18	ND		0.43 1	18 ND		0.40	17	ND		0.40	16	ND		0.41
2-Propanol	TO-15 μg/m ³	12	0.	68	10	ND		0.77	11	ND		0.83 11	ND		0.81 1	11 21		0.76	10	ND		0.74	9.9	ND		0.77
3-Chloropropene	TO-15 μg/m ³	ND	1	.3	13	ND		1.5	14	ND		3.1 14	ND		3.0 1	14 ND		2.8	13	ND		2.8	13	ND		2.9
4-Ethyltoluene	TO-15 μg/m ³	ND	1	.3	5.1	ND		1.4	5.7	ND		1.1 5.6	ND		1.1 5	5.4 ND		1.0	5.1	ND		1.0	5.0	ND		1.0 5
4-Methyl-2-pentanone	TO-15 μg/m ³	ND	0.	64	4.2	ND		0.72	4.8	ND		1.1 4.6	4.7		1.1 4	.5 ND		1.0	4.2	ND		0.98	4.1	ND		1.0 4
Acetone	TO-15 μg/m ³	ND	1	.8	24	ND		2.0	28	ND		2.7 27	27		2.6 2	26 ND		2.4	24	ND	·	2.4	24	ND		2.5
Acrolein	TO-15 μg/m ³	ND	UJ 5F 2	.8	9.5	ND	UJ 5F	3.2	11	ND	UJ 5F	1.6 10	ND	UJ 5F	1.5 1	10 ND	UJ 5F	1.4	9.4	ND	UJ 5F	1.4	9.3	ND	UJ 5F	1.4
Acrylonitrile	TO-15 μg/m ³	ND	0.	85	9.0	ND		0.96	10	ND		0.60 9.8	ND		0.58 9	9.5 ND		0.55	8.9	ND	·	0.54	8.8	ND		0.56
alpha-Chlorotoluene	TO-15 μg/m ³	ND	0.	43	5.4	ND		0.49		ND		0.53 5.8	ND		0.51 5	5.7 ND		0.48	5.3	ND		0.47	5.2	ND		0.49 5
Benzene	TO-15 μg/m ³	ND	0.	25	3.3	ND		0.28	3.7	ND		0.68 3.6	ND		0.66 3	3.5 ND		0.62	3.3	ND		0.61	3.2	ND		0.63
Bromodichloromethane	TO-15 μg/m ³	ND	1	.3	6.9	ND		1.5	7.8	ND		1.1 7.6	ND		1.1 7	'.3 ND		1.0	6.9	ND		1.0	6.8	ND		1.0 7
Bromoform	TO-15 μg/m ³	ND	0.	92	11	ND		1.0	12	ND		1.2 12	ND		1.2 1	11 ND		1.1	11	ND		1.1	10	ND		1.1
Bromomethane	TO-15 μg/m ³	ND	1	.8	40	ND		2.0	45	ND		1.9 44	ND		1.8 4	12 ND		1.7	40	ND		1.7	39	ND		1.8
Carbon Disulfide	TO-15 μg/m ³	ND	3	.0	13	ND		3.4	14	ND		1.4 14	ND	1	1.3 1	14 ND		1.2	13	ND		1.2	12	ND		1.3
Carbon Tetrachloride	TO-15 μg/m ³	ND	1	.1	6.5	ND			7.3	ND		1.9 7.1	ND		1.8 6	6.9 ND		1.7	6.5	ND		1.7	6.4	ND		1.7
Chlorobenzene	TO-15 μg/m ³	ND				ND		0.47	5.4	ND		0.47 5.2	ND			5.0 ND		0.43	4.7	ND		0.42	4.6	ND		0.44
Chloroethane	TO-15 μg/m ³	ND	2	.2	11	ND		2.5	12	ND		3.1 12	ND		3.0 1	12 ND		2.8	11	ND		2.7	11	ND		2.8
Chloroform	TO-15 μg/m ³	ND	0.	60	5.0	ND		0.67	5.7	ND		0.47 5.5	ND		0.46 5	5.3 5.6		0.43	5.0	ND		0.42	4.9	ND		0.44 5
Chloromethane	TO-15 μg/m ³	ND	2	.3	21	ND		2.5	24	ND		1.6 23	ND		1.6 2	23 ND		1.5	21	ND		1.5	21	ND		1.5
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND	0.	74	4.1	ND		0.83	4.6	ND		1.6 4.5	ND		1.6 4	.3 ND		1.5	4.1	ND		1.4	4.0	ND		1.5 4
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND	0.	68	4.7	ND		0.77	5.3	ND		0.99 5.1	ND		0.96 5	5.0 ND		0.90	4.7	ND		0.89	4.6	ND		0.92 4

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 28 of 37)

	Location ID		VW57A		T		VW57B				VW57B				VW58A				VW58B				VW59A		1		VW59B	
	Sampling Date/Time	(07/14/2021 0	7:07		n	7/13/2021 12	2:52			07/13/2021 1	2:52			08/16/2021 1	1:13			08/16/2021 1				08/17/2021 1	0:16			08/17/2021 1	
	Sample Depth (feet)		5.5			Ü	14.5				14.5				5.5	0			14.5	1.00			5.5	0.10			14.5	0.10
	Sample Type		N				N				FD				N				N				N				N	
	Field Sample ID		SG-VW57A-	-02			SG-VW57B-0	04			SG-VW57B	-05			SG-VW58A-	-02			SG-VW58B	-02			SG-VW59A	02			SG-VW59B	-02
	Lab Sample ID		2107284-01				2107260A-23	3A			2107260A-2				2108390-04				2108390-0				2108390-18				2108390-1	
	Status		Validated				Validated				Validated	<u> </u>			Validated	<u> </u>			Validated	<u> </u>			Validated				Validated	1
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL RL
Cumene	TO-15 μg/m ³	ND		0.65	5.1	ND		0.73	5.7	ND		0.70	5.6	ND		0.68	5.4	ND		0.64	5.1	ND		0.62	5.0	ND		0.65 5.2
Cyclohexane	TO-15 μg/m ³	ND		0.76	3.6	ND		0.86	4.0	ND		0.64	3.9	ND		0.62	3.8	ND		0.58	3.5	ND		0.57	3.5	ND		0.59 3.6
Dibromochloromethane	TO-15 μg/m ³	ND		1.2	8.8	ND		1.4	9.9	ND		1.6	9.6	ND		1.6	9.3	ND		1.5	8.8	ND		1.5	8.6	ND		1.5 8.9
Dibromomethane	TO-15 μg/m ³	ND		1.4	29	ND		1.6	33	ND		1.2	32	ND		1.2	31	ND		1.1	29	ND		1.1	29	ND		1.1 30
Ethanol	TO-15 μg/m ³	ND	UJ 2A-	2.1	20	ND		2.4	22	ND		2.6	21	ND		2.6	21	ND		2.4	19	22		2.4	19	27		2.4 20
Ethyl Acetate	TO-15 μg/m ³	ND		4.3	15	ND		4.8	17	ND		0.95	16	ND		0.92	16	ND		0.87	15	ND		0.85	14	ND		0.88 15
Ethylbenzene	TO-15 μg/m ³	ND		0.75		ND		0.85	5.0	ND		1.3	4.9	6.9		1.2	4.8	ND		1.2	4.5	4.4		1.1	4.4	ND		1.2 4.6
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		1.3		ND		1.4	19	ND		1.0	19	ND		0.96		ND		0.91	17	ND		0.89	17	ND		0.92 18
Freon 11	TO-15 μg/m ³	ND		0.67	5.8	ND		0.75	6.5	ND		1.4	6.3	ND		1.3	6.2	ND		1.2	5.8	ND		1.2	5.7	ND		1.3 5.9
Freon 12	TO-15 μg/m ³	ND		0.92	5.1	ND		1.0	5.8	ND		0.88	5.6	7.0		0.86	5.4	18		0.80		7.5		0.79	5.0	26		0.82 5.2
Freon 113	TO-15 μg/m ³	ND		1.2	7.9	ND		1.4	8.9	ND		1.4	8.7	ND		1.3	8.4	ND			7.9	ND		1.2	7.7	ND		1.3 8.0
Freon 114	TO-15 μg/m ³	ND		1.0	7.2	ND		1.1	8.1	ND		1.4	7.9	ND		1.4	7.6	ND		1.3	7.2	ND		1.2	7.1	ND		1.3 7.3
Freon 134a	TO-15 μg/m ³	ND		2.3	17	ND		2.6	19	ND		2.3	19	ND		2.2	18	ND		2.1	17	ND		2.1	17	ND		2.2 18
Heptane	TO-15 μg/m ³	ND		0.76	4.2	ND		0.85	4.8	ND		1.1	4.6	ND		1.1	4.5	ND		1.0	4.2	ND		0.99	4.1	ND		1.0 4.3
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.9	44	ND		5.5	50	ND		4.4	48	ND		4.3	47	ND		4.0	44	ND		4.0	43	ND		4.1 45
Hexachloroethane	TO-15 μg/m ³	ND		40	40	ND		45	45	ND		44	44	ND		42	42	ND		40	40	ND		39	39	ND		41 41
Hexane	TO-15 μg/m ³	9.5		0.68	3.6	ND		0.76	4.1	ND		0.73	4.0	700		0.70	3.8	390		0.66	3.6	150		0.65	3.6	130		0.68 3.7
Iodomethane	TO-15 μg/m ³	ND		3.3	60	ND		3.7	68	ND		0.85	66	ND	UJ 5A	0.83		ND	UJ 5A	0.78	60	ND	UJ 5A	0.76	59	ND	UJ 5A	0.79 61
Isopropyl ether	TO-15 μg/m ³	ND		1.2	17	ND		1.3	19	ND		0.56	19	ND		0.54		ND		0.51	17	ND		0.50	17	ND		0.52 18
m- & p-Xylenes	TO-15 μg/m ³	ND		2.4	4.5	ND		2.8	5.0	ND		1.1	4.9	24		1.1	4.8	14		1.0	4.5	16		1.0	4.4	11		1.0 4.6
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.91	15	ND		1.0	17	ND		0.87	16	ND		0.85	16	ND		0.80	15	ND		0.78	14	ND		0.81 15
Methylene Chloride	TO-15 μg/m ³	ND		2.0	36	ND		2.3	40	ND		0.81	39	ND		0.78	38	ND		0.74	36	ND		0.72	35	ND		0.75 36
Naphthalene	TO-15 μg/m ³	ND	UJ 5B-	0.71	11	ND		0.80	12	ND		4.6	12	ND		4.4	11	ND		4.2	11	ND		4.1	10	ND		4.2 11
o-Xylene	TO-15 μg/m ³	ND		1.2	4.5	ND		1.4	5.0	ND		1.2	4.9	10		1.2	4.8	5.0		1.1	4.5	6.1		1.1	4.4	4.7		1.1 4.6
Propylbenzene	TO-15 μg/m ³	ND		0.28	5.1	ND		0.32	5.7	ND		0.92	5.6	ND		0.89	5.4	ND		0.84	5.1	ND		0.82	5.0	ND		0.86 5.2
Propylene	TO-15 μg/m ³	ND		1.3	7.1	ND		1.5	8.0	ND		0.58	7.8	ND		0.56	7.5	ND		0.52	7.1	ND		0.51	7.0	ND		0.53 7.2
Styrene	TO-15 μg/m ³	ND		0.51		ND		0.58	5.0	ND		0.62	4.8	ND		0.60		ND		0.57	4.4	ND		0.56	4.3	ND		0.58 4.5
tert-Amyl methyl ether	TO-15 μg/m ³				17			2.8	19	ND		2.0	19	ND		1.9		ND			17	ND		1.8		ND		1.8 18
tert-Butyl alcohol	TO-15 μg/m ³				12			1.3				0.95		ND				ND		0.86	12	ND			12			0.88 13
Tetrachloroethene	TO-15 μg/m ³				7.0				7.9					160				380				100				300		1.1 7.1
Tetrahydrofuran	TO-15 μg/m ³				3.0				3.4				3.3					ND		0.61						ND		0.63 3.1
Toluene	TO-15 μg/m ³				3.9				4.4				4.2			0.42	4.1	ND			3.9			0.39	3.8	6.5		0.41 4.0
TPH - Gasoline	TO-15 μg/m ³				420				480					1,200				780				ND			410			430 430
trans-1,2-Dichloroethene	TO-15 μg/m ³				4.1				4.6				4.5				_	ND			4.1	ND			4.0			1.1 4.2
trans-1,3-Dichloropropene	TO-15 μg/m ³			_	4.7				5.3	ND		0.89		ND				ND			4.7				4.6			0.83 4.8
Trichloroethene	TO-15 μg/m ³				5.6				6.3	ND			6.1					ND		0.80		ND				ND		0.81 5.6
Vinyl Acetate	TO-15 μg/m ³				14			3.2		ND			16				_	ND		3.9		ND				ND		4.0 15
Vinyl Bromide					18				20	ND			20					ND			18	ND			18	ND		1.2 18
Vinyl Chloride	TO-15 μg/m ³	ND			2.6				3.0			0.73						ND			2.6				2.6	ND		0.68 2.7

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 29 of 37)

	Location ID		VW60A				VW60B				VW61A				VW61B			Ī		VW6	32			VW63A	
	Sampling Date/Time		08/16/2021 12	.53			08/16/2021 12	2.08			08/16/2021 1	3.26			07/15/2021 0	6·58			0	7/15/202				08/16/2021 1	4.42
	Sample Depth (feet)		5.5	.00			14.5	2.00			5.5	0.20			14.5	0.00			0	25.				5.5	7.72
	Sample Type		N				N				N				N					N N				N	
	Field Sample ID		SG-VW60A-0)2			SG-VW60B-	02			SG-VW61A	-02			SG-VW61B-	-01				SG-VW	62-01			SG-VW63A	-02
	Lab Sample ID		2108390-07	4			2108390-06	βA			2108390-0	8A			2107362A-0	2A			2	2107362	A-03A			2108390-0	9A
	Status		Validated				Validated				Validated	d			Validated	1				Valida	ated			Validated	1
A 1: 4-	Madaad Huita	_ "	los p	uni I	ы	D 11	la. p	MDI	Lo		lov B	Luni	Lou	. "	los p	Luni	Lo	D 11	١٠٨		Lubi	l su	_ "	04 5	Luci Loi
Analyte 1,1,1,2-Tetrachloroethane	Method Units TO-15 μg/m ³	Result ND	QA Reason			Result ND	QA Reason			ND	QA Reason	1			QA Reason	0.91			QA R	Reason 4D	MDL	RL	1	QA Reason	
	TO-15 μg/m³ TO-15 μg/m³	ND		1.4	28 5.5	ND		1.4	29	ND ND		1.5	30	ND ND			24	ND	R	4D 4D	4,400 2,800	120,000	ND ND		1.4 29
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND			6.9	ND		0.45	5.7 7.2	ND		0.47		ND		0.59	4.9 6.1	ND ND	R	4D 4D	2,800	24,000 30,000	ND		0.45 5.7 0.68 7.2
1,1,2-Trichloroethane	TO-15 μg/m ³				5.5	ND		0.00	5.7	ND		0.70		ND		0.46	4.9	ND	R	4D 4D	3,200	24,000	ND		0.08 7.2
1.1-Dichloroethane	TO-15 μg/m ³	ND	 		4.1	ND		0.89	4.2	ND		0.90	4.4	ND		0.47	3.6	ND ND	R	4D	2,300	17,000	ND		0.89 4.2
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.3	4.0	ND		1.4	4.2	ND		1.4	4.3	ND		0.74	3.5		R	4D	3,600	17,000	ND		1.4 4.2
1.1-Difluoroethane	TO-15 μg/m ³	ND		2.4	11	ND		2.5	11	14		2.6	12	11		1.8	9.7	5,300,000	1	4D,6E	8,800	46,000	ND		2.5 11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.5	24	ND		1.6	25	ND		1.6	26	ND		1.6	22	ND	R	4D,6L	7,900	100,000	ND		1.6 25
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.6	30	ND		2.7	31	ND		2.9	32	ND		3.0	26	ND	R	4D	14,000	130,000	ND		2.7 31
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND			5.0	ND		0.60	5.2	ND		0.62		ND		1.6	4.4	ND	R	4D	7,800	21,000	ND		0.60 5.2
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND			39	ND		1.3	40	ND		1.4	42	ND		3.3	35	ND	R	4D	16,000	170,000	ND		1.3 40
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND			7.8	ND		1.6	8.1	ND		1.6	8.4	ND		0.58	6.9	ND	R	4D	2,800	33,000	ND		1.6 8.1
1,2-Dichlorobenzene	TO-15 μg/m ³	ND			6.1	ND		0.71	6.3	ND		0.74		ND		0.46		ND	R	4D	2,200	26,000	ND		0.71 6.3
1,2-Dichloroethane	TO-15 μg/m ³	ND			4.1	ND		0.70	4.2	ND		0.73	4.4	ND		0.73		ND	R	4D	3,500	17,000	ND		0.70 4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.1	4.7	ND		1.2	4.8	ND		1.2	5.1	ND	UJ 5A	1.4	4.1	ND	R	4D,5A	6,700	20,000	ND		1.2 4.8
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.0	5.0	ND		1.1	5.2	ND		1.1	5.4	ND		0.68	4.4	ND	R	4D	3,300	21,000	ND		1.1 5.2
1,3-Butadiene	TO-15 μg/m ³	ND		0.64	2.2	ND		0.67	2.3	ND		0.70	2.4	ND		0.65	2.0	ND	R	4D	3,100	9,500	ND		0.67 2.3
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.69	6.1	ND		0.72	6.3	ND		0.75	6.6	ND		0.69	5.4	ND	R	4D	3,300	26,000	ND		0.72 6.3
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.72	6.1	ND		0.75	6.3	ND		0.78	6.6	ND		0.35	5.4	ND	R	4D	1,700	26,000	ND		0.75 6.3
1,4-Dioxane	TO-15 μg/m ³	ND		2.1	14	ND		2.2	15	ND		2.3	16	ND		0.64	13	ND	R	4D	3,100	62,000	ND		2.2 15
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND		0.55	4.7	ND		0.58	4.9	ND		0.60	5.1	ND		0.32	4.2	ND	R	4D	1,600	20,000	ND		0.58 4.9
2-Butanone (Methyl Ethyl Ketone	e) TO-15 μg/m³	ND		1.8	12	ND		1.9	12	ND		2.0	13	ND		1.8	10	ND	R	4D	9,000	51,000	ND		1.9 12
2-Hexanone	TO-15 μg/m ³	ND		0.40	16	ND		0.41	17	ND		0.43	18	ND		1.2	15	ND	R	4D	6,000	71,000	ND		0.41 17
2-Propanol	TO-15 μg/m ³	ND		0.74	9.9	ND		0.77	10	ND		0.81	11	13		0.59	8.8	ND	R	4D	2,800	42,000	22		0.77 10
3-Chloropropene	TO-15 μg/m ³	ND		2.8	13	ND		2.9	13	ND		3.0	14	ND		1.1	11	ND	R	4D	5,500	54,000	ND		2.9 13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.0	5.0	ND		1.0	5.2	ND		1.1	5.4	ND		1.1	4.4	ND	R	4D	5,400	21,000	ND		1.0 5.2
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		0.98	4.1	ND		1.0	4.3	ND		1.1	4.5	ND		0.55	3.7	ND	R	4D	2,600	18,000	ND		1.0 4.3
Acetone	TO-15 μg/m ³	ND		2.4	24	ND		2.5	25	40		2.6	26	ND		1.5	21	ND	R	4D	7,400	100,000	34		2.5 25
Acrolein	TO-15 μg/m ³	ND			9.3	ND	UJ 5F	1.4	9.6	ND	UJ 5F	1.5	_	ND	UJ 5F				R	4D,5F	12,000	40,000	ND	UJ 5F	1.4 9.6
Acrylonitrile	TO-15 μg/m ³	ND		0.54		ND		0.56		ND		0.58					7.8		R	4D	3,500	37,000	ND		0.56 9.1
alpha-Chlorotoluene	TO-15 μg/m ³	ND		0.47		ND		0.49		ND		0.51				0.37			R	4D	1,800	22,000	ND		0.49 5.4
Benzene	TO-15 μg/m ³			0.61		ND		0.63		ND		0.66		ND			2.8		R	4D	1,000	14,000	ND		0.63 3.4
Bromodichloromethane	TO-15 μg/m ³	ND			6.8	ND		1.0	7.0	15		1.1		9.9		1.1	6.0	ND	R	4D	5,500	29,000	ND		1.0 7.0
Bromoform	TO-15 μg/m ³			1.1	10	ND		1.1	11	ND		1.2		ND		0.80			R	4D	3,800	44,000	ND		1.1 11
Bromomethane	TO-15 μg/m ³				39	ND		1.8	41	ND		1.8		ND		1.6	35	ND	R	4D	7,500	170,000	ND		1.8 41
Carbon Disulfide	TO-15 μg/m ³	ND		1.2	12	ND		1.3	13	ND		1.3		ND		2.6	11	ND	R	4D	12,000	54,000	ND		1.3 13
Carbon Tetrachloride	TO-15 μg/m ³	ND	+		6.4 4.6	ND		1.7 0.44	6.6	ND ND		1.8 0.46		ND ND		0.92		ND	R	4D	4,400	27,000	ND		1.7 6.6 0.44 4.8
Chlorosthano	TO-15 μg/m ³	ND ND		0.42 2.7		ND		2.8	4.8	ND		+						ND	R	4D	1,700	20,000	ND		
Chloroethane	TO-15 μg/m ³		 		11	ND			11			3.0		ND 460		1.9	9.4	ND	R	4D	9,200	45,000	ND		2.8 11
Chloroform	TO-15 μg/m ³	ND			4.9	5.4		0.44	5.1	240		0.46		160		0.52		ND	R	4D	2,500	21,000	13		0.44 5.1
Chloromethane cis-1,2-Dichloroethene	TO-15 μg/m ³ TO-15 μg/m ³	ND ND	 		21	ND		1.5	22	ND ND		1.6		ND		2.0	18	ND	R	4D	9,400	89,000	ND		1.5 22
cis-1,3-Dichloropropene		ND			4.0	ND ND		1.5 0.92	4.2	ND ND		1.6 0.96		ND		0.64			R R	4D	3,100	17,000	ND		1.5 4.2
ors - 1,3-טוטווטוטpropene	TO-15 μg/m ³	טא		0.89	4.0	ND		0.92	4.8	ND		0.96	5.0	ND	l	0.59	4.1	ND	ĸ	4D	2,800	20,000	ND		0.92 4.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 30 of 37)

	Location ID		VW60A				VW60B				VW61A				VW61B				VW	62			VW63A	—	_
	Sampling Date/Time		08/16/2021 12	2:53			08/16/2021 12	2:08			08/16/2021 1				07/15/2021 06:5	8			07/15/202				08/16/2021 1	4:42	
	Sample Depth (feet)		5.5				14.5				5.5				14.5				25				5.5		
	Sample Type		N				N				N				N				N				N		
	Field Sample ID		SG-VW60A-	02			SG-VW60B-	02			SG-VW61A	-02			SG-VW61B-01				SG-VW	/62-01			SG-VW63A-	-02	
	Lab Sample ID		2108390-07	Ά			2108390-06	βA			2108390-0	8A			2107362A-02A				2107362	2A-03A			2108390-09	9A	
	Status		Validated				Validated				Validated	1			Validated				Valida	ated			Validated		
Analyta	Mothod Unito	D 14	loa	MDI	ы	D 14	loa Dl	Lubi I	Б.	D 14	Loa B	LMDI	Lou	D 14	l o a - D l M			u La	DA	L MDI	l n	D 14	OA D	LMDI	Lou
Analyte	2		QA Reason			Result	QA Reason				QA Reason	+			QA Reason M		L Resu		QA Reason	MDL	RL	1	QA Reason	_	_
Cumene	TO-15 μg/m ³	ND		0.62		ND			5.2	ND		0.68	5.4	ND					R 4D	2,700	21,000	ND		0.65	
Cyclohexane	TO-15 μg/m ³	ND			3.5	ND			3.6	ND		0.62	3.8	ND	1				R 4D	3,200	15,000	ND		0.59	
Dibromochloromethane	TO-15 μg/m ³	ND		1.5	8.6	ND		1.5	8.9	ND		1.6	9.3	ND					R 4D	5,100	37,000	ND		1.5	8.9
Dibromomethane	TO-15 μg/m ³	ND		1.1	29	ND		1.1	30	ND		1.2	31	ND			_		R 4D	5,900	120,000	ND		1.1	30
Ethanol	TO-15 μg/m ³	ND		2.4	19	ND		2.4	20	ND		2.6	21	ND	-	_	_		R 4D	8,800	81,000	ND		2.4	20
Ethyl Acetate	TO-15 μg/m ³	ND		0.85	14	ND		0.88	15	ND		0.92	16	ND					R 4D	18,000	62,000	ND		0.88	15
Ethylbenzene	TO-15 μg/m ³	ND		1.1	4.4	ND		1.2	4.6	7.7		1.2	4.8	ND	0.	65 3			R 4D	3,100	19,000	ND		1.2	4.6
Ethyl-tert-butyl ether	TO-15 μg/m³	ND		0.89	17	ND		0.92	18	ND		0.96	18	ND	1	.1 1	5 N	1D	R 4D	5,400	72,000	ND		0.92	18
Freon 11	TO-15 μg/m ³	ND		1.2	5.7	ND		1.3	5.9	ND		1.3	6.2	ND	0.	58 5	۱ 0.	1D	R 4D	2,800	24,000	ND		1.3	5.9
Freon 12	TO-15 μg/m ³	7.7		0.79	5.0	17		0.82	5.2	6.3		0.86	5.4	5.4	0.	80 4	.4 N	1D	R 4D	3,800	21,000	11		0.82	5.2
Freon 113	TO-15 μg/m ³	ND		1.2	7.7	ND		1.3	8.0	ND		1.3	8.4	ND	1	.1 6	.8 1	1D	R 4D	5,200	33,000	ND		1.3	8.0
Freon 114	TO-15 μg/m ³	ND		1.2	7.1	ND		1.3	7.3	ND		1.4	7.6	ND	0.	86 6	.2 N	1D	R 4D	4,200	30,000	ND		1.3	7.3
Freon 134a	TO-15 μg/m ³	ND		2.1	17	ND		2.2	18	ND		2.2	18	ND				1D	R 4D	9,700	72,000	ND		2.2	18
Heptane	TO-15 μg/m ³	ND		0.99	4.1	ND			4.3	ND		1.1	4.5	ND		66 3		1D	R 4D	3,200	18,000	ND		1.0	4.3
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.0	43	ND		4.1	45	ND		4.3	47	ND		_			R 4D	20,000	180,000	ND		4.1	45
Hexachloroethane	TO-15 μg/m ³	ND		39	39	ND		41	41	ND		42	42	ND		_			R 4D	170,000	170,000	ND		41	41
Hexane	TO-15 μg/m ³	420		0.65		300			3.7	300		0.70	3.8	16					R 4D	2,800	15,000	190		0.68	
Iodomethane	TO-15 μg/m ³	ND	UJ 5A	0.76		ND	UJ 5A	0.79	61	ND	UJ 5A	0.83	64	ND					R 4D	14,000	250,000	ND	UJ 5A	0.79	
Isopropyl ether	TO-15 μg/m ³	ND	03 3A	0.70		ND	03 3A	0.73	18	ND	03 3A	0.54	18	ND					R 4D	4,800	72,000	ND	00 0A	0.73	
m- & p-Xylenes	TO-15 μg/m ³	9.8		1.0	4.4	9.4			4.6	19		1	4.8	ND	-	.1 3	_		R 4D	10,000	19,000	5.5		1.0	4.6
· · · · ·			1					1.0				1.1			 	_						+		-	
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.78	14	ND		0.81	15	ND		0.85	16	ND		_			R 4D	3,800	62,000	ND		0.81	15
Methylene Chloride	TO-15 μg/m ³	ND		0.72	35	ND		0.75	36	ND		0.78	38	ND	t	_			R 4D	8,500	150,000	ND		0.75	
Naphthalene	TO-15 μg/m ³	ND		4.1	10	ND		4.2	11	ND		4.4	11	ND	0.	_	_		R 4D	2,900	45,000	ND		4.2	11
o-Xylene	TO-15 μg/m ³	4.6		1.1	4.4	ND		1.1	4.6	9.4		1.2	4.8	ND	1	_	_		R 4D	5,000	19,000	ND		1.1	4.6
Propylbenzene	TO-15 μg/m ³	ND		0.82	5.0	ND			5.2	ND		0.89	5.4	ND	0.	_			R 4D	1,200	21,000	ND		0.86	5.2
Propylene	TO-15 μg/m ³	ND		0.51	7.0	ND		0.53	7.2	ND		0.56	7.5	ND	1	.2 6	.2 N	1D	R 4D	5,600	30,000	ND		0.53	7.2
Styrene	TO-15 μg/m ³	ND		0.56	4.3	ND		0.58	4.5	ND		0.60	4.7	ND	0.	44 3	۱ 8.	1D	R 4D	2,100	18,000	ND		0.58	4.5
tert-Amyl methyl ether	TO-15 μg/m³	ND		1.8	17	ND		1.8	18	ND		1.9	18	ND	2	.2 1	5 N	1D	R 4D	10,000	72,000	ND		1.8	18
tert-Butyl alcohol	TO-15 μg/m ³	ND		0.85	12	ND		0.88	13	ND		0.92	13	ND	0.	99 1	1 N	1D	R 4D	4,800	52,000	ND		0.88	13
Tetrachloroethene	TO-15 μg/m ³	96		1.1	6.8	200		1.1	7.1	120		1.2	7.4	120	1	.1 6	.1 1	1D	R 4D	5,200	29,000	14		1.1	7.1
Tetrahydrofuran	TO-15 μg/m ³	ND		0.60	3.0	ND		0.63	3.1	ND		0.65	3.2	ND	0.	57 2	.6 N	ND	R 4D	2,700	13,000	ND		0.63	3.1
Toluene	TO-15 μg/m ³	7.0		0.39		10			4.0	11		0.42	4.1	5.4		82 3			R 4D	3,900	16,000	ND		0.41	
TPH - Gasoline	TO-15 μg/m ³	940		410		650			430	860		450	450	ND		70 3 ⁻			R 4D	1,800,000	1,800,000	570		_	430
trans-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.0		ND			4.2	ND		1.1	4.3	ND		.5 3			R 4D	7,100	17,000	ND		1.1	
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.80		ND			4.8	ND		0.86	5.0	ND		56 4			R 4D	2,700	20,000	ND		0.83	
Trichloroethene	TO-15 μg/m ³	ND	1	0.78		ND		-	5.6	ND		0.85	5.9	ND					R 4D	2,900	23,000	ND		0.81	
Vinyl Acetate	TO-15 μg/m ³	ND		3.8	14	ND		4.0	15	ND		4.2	15	ND					R 4D	12,000	61,000	ND		4.0	
Vinyl Acetate Vinyl Bromide	TO-15 μg/m ³	ND		1.2	18	ND			18	ND		1.3		ND					R 4D					1.2	
-								1.2	_				19							6,100	75,000	ND			-
Vinyl Chloride	TO-15 μg/m ³	ND		0.65	2.6	ND		0.68	2./	ND		0.71	2.8	ND	0.	90 2	.3 N	1D	R 4D	4,300	11,000	ND		0.68	2.7

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 31 of 37)

	Location ID		VW63B		1	VW63B		1		VW64A		ī		VW64B	l			VW65A		I		VW65B		I		VW66A		—
	Sampling Date/Time		08/16/2021 15:18			08/16/2021 15	5:18			08/17/2021 09	9:38			۷ ۷۷045 1 07/15/2021				07/30/2021 09	:36		٢	07/30/2021 10	:06			07/30/2021 1	1:14	
	Sample Depth (feet)		14.5			14.5			,	5.5	3.50			14.5				5.5	.00			14.5	.00			5.5		
	Sample Type		N			FD				N				N				N				N				N		
	Field Sample ID		SG-VW63B-02			SG-VW63B-	03			SG-VW64A-	-02			SG-VW64E	3-01			SG-VM65A-0)1			SG-VM65B-0)1			SG-VM66A-	-01	•
	Lab Sample ID		2108390-10A			2108390-11	Α			2108390-17				2107362A-				2107684-07	Α			2107684-08	Α			2107684-09		
	Status		Validated			Validated				Validated	1			Validate	d			Validated				Validated				Validated	<u> </u>	
Analyte	Method Units	Result	QA Reason MD	гГы	Result	QA Reason	мы І	ы	Dogult	QA Reason	LMDI	RL	Result	I OA Bassan	LMDI	l Di	Dooult	QA Reason	мы І	ы	Result	QA Reason	MDI	RL	Result	QA Reason	LMDL	DI
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND	QA Reason MD	_	ND	QA Reason	1.4	29	ND	QA Neason	1.4	28	ND	QA Reason	1.2	32	ND	QA Reason	1.5	30	ND	QA Reason	1.4	28	ND	QA Reason	1 1	29
1,1,1-Trichloroethane	TO-15 μg/m ³	ND	0.4	_			0.45	5.7	ND		0.44	5.6	ND		0.76	6.3	ND			5.9	ND		0.44	5.6	ND		1 1	5.8
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND	0.6				0.68	7.2	ND		0.66	7.1	ND		0.62	8.0	ND		0.69	7.4	ND		0.66	7.0	ND		1	7.3
1,1,2-Trichloroethane	TO-15 μg/m ³	ND	0.9			1	0.92	5.7	ND		0.90	5.6	ND		0.86	6.3	ND	1	0.94	5.9	ND		0.89	5.6	ND		1	5.8
1,1-Dichloroethane	TO-15 μg/m ³	ND	0.8		-	1	0.89	4.2	ND		0.87	4.2	ND		0.61	4.7	ND		0.91	4.4	ND		0.86	4.1	ND			4.3
1,1-Dichloroethene	TO-15 μg/m ³	ND	1.4				1.4	4.2	ND		1.3	4.1	ND		0.96	4.6	ND		1.4	4.3	ND		1.3	4.0	ND		_	4.2
1,1-Difluoroethane	TO-15 μg/m ³	ND	2.5		ND		2.5	11	ND		2.4	11	24		2.4	12	ND		2.5	12	ND		2.4	11	ND		2.5	12
1,2,3-Trichloropropane	TO-15 μg/m ³	ND	1.6		ND		1.6	25	ND		1.6	25	ND		2.1	28	ND		1.6	26	ND		1.5	25	ND		-	26
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND	2.7	31	ND		2.7	31	ND		2.7	30	ND		3.9	34	ND		2.8	32	ND		2.7	30	ND		2.8	32
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND	0.6	0 5.2	ND		0.60	5.2	6.4		0.58	5.1	ND		2.1	5.7	ND		0.61	5.3	ND		0.58	5.0	ND		0.60	5.2
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND	1.3	3 40	ND		1.3	40	ND		1.3	40	ND		4.3	45	ND		1.4	42	ND		1.3	39	ND		1.3	41
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND	1.6	8.1	ND		1.6	8.1	ND		1.5	7.9	ND		0.75	8.9	ND		1.6	8.3	ND		1.5	7.8	ND		1.6	8.2
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	0.7	1 6.3	ND		0.71	6.3	ND		0.70	6.2	ND		0.60	7.0	ND		0.73	6.5	ND		0.69	6.1	ND		0.72	6.4
1,2-Dichloroethane	TO-15 μg/m ³	ND	0.7	0 4.2	ND		0.70	4.2	ND		0.68	4.2	ND		0.94	4.7	ND		0.71	4.4	ND		0.68	4.1	ND		0.71	4.3
1,2-Dichloropropane	TO-15 μg/m ³	ND	1.2	_			1.2	4.8	ND		1.1	4.8	ND	UJ 5A	1.8	5.4	ND		1.2	5.0	ND		1.1	4.7	ND			4.9
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND	1.1	5.2	ND		1.1	5.2	ND		1.0	5.1	ND		0.88	5.7	ND		1.1	5.3	ND		1.0	5.0	ND		1.1	5.2
1,3-Butadiene	TO-15 μg/m ³	ND	0.6	_			0.67	2.3	ND		0.66		ND		0.85	2.6	ND				ND		0.65	2.2	ND		-	2.4
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	0.7	_				6.3	ND		0.71	6.2	ND		0.89	7.0	ND			6.5	ND		0.70	6.1	ND			
1,4-Dichlorobenzene	TO-15 μg/m ³	ND	0.7					6.3	ND		0.74	6.2	ND		0.45	7.0	ND		0.77	6.5	ND		0.73	6.1	ND			6.4
1,4-Dioxane	TO-15 μg/m ³	ND	2.2	_			2.2	15	ND		2.2	15	ND		0.83	17	ND		2.3	15	ND		2.2	15	ND		2.3	15
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	0.5				0.58	4.9	ND		0.56		ND		0.42	5.4	100		0.59	5.0	ND		0.56	4.8	42			5.0
2-Butanone (Methyl Ethyl Ketone		ND	1.9				1.9	12	ND		1.8	12	ND		2.4	14	ND		1.9	13	ND		1.8	12	ND		1.9	12
2-Hexanone	TO-15 μg/m ³	ND	0.4		ND		0.41	17	ND		0.40	17	ND		1.6	19	ND	1	0.42	18	ND		0.40	17	ND		1	17
2-Propanol	TO-15 μg/m ³	ND	0.7		ND		0.77	10	9.9	J 6G	0.76	10	26		0.76	11	12		0.79	10	ND		0.75	10	ND		0.78	10
3-Chloropropene	TO-15 μg/m ³	ND	2.9	_	ND		2.9	13	ND		2.8	13	ND		1.5	14	ND		2.9	13	ND		2.8	13	ND		2.9	13
4-Ethyltoluene	TO-15 μg/m ³	ND	1.0				1.0	5.2	5.6		1.0	5.1	ND		1.4	5.7	ND		1.1	5.3	ND		1.0	5.0	ND			5.2
4-Methyl-2-pentanone	TO-15 μg/m ³	ND	1.0	_	ND ND		1.0	4.3 25	ND ND		1.0 2.4	4.2	ND 31		0.71 2.0	4.8 28	ND 54		1.0 2.5	4.4 26	ND ND		0.99	4.2 24	ND ND		1.0 2.5	4.4 25
Acetone Acrolein	TO-15 μg/m ³	ND	2.0	9.6		UJ 5F	1.4			III.5E				UJ 5F	3.2		<u> </u>	UJ 5F	_		ND	UJ 5F		9.4		UJ 5F	1.5	
Acrylonitrile	TO-15 μg/m ³ TO-15 μg/m ³	ND ND		_	ND ND		0.56		ND ND	UJ 5F	1.4	8.9	ND ND	UJ SF	0.95	11	ND ND			9.8	ND			8.8	ND	03.95	0.56	
alpha-Chlorotoluene	TO-15 μg/m ³	ND		_	ND		0.56		ND			5.3	ND		0.95						ND			5.3			0.50	
Benzene	TO-15 μg/m ³	ND	0.4				0.49		ND		0.46		ND		0.48		16		0.65		ND			3.2			0.64	
Bromodichloromethane	TO-15 μg/m ³	11) 7.0				7.0	10		1.0		19		1.5	7.8	ND			7.2	ND				ND		1.1	
Bromoform	TO-15 μg/m ³	ND	1.1		ND		1.1	11	ND		1.1	11	ND		1.0	12	ND		1.2	11	ND		1.1		ND			
Bromomethane	TO-15 μg/m ³	ND	1.8				1.8	41	ND		1.7	40	ND		2.0	45	ND		1.8	42	ND		1.7	40	ND		1.8	
Carbon Disulfide	TO-15 μg/m ³	ND	1.3				1.3	13	ND		1.2	13	ND		3.4	14	15		1.3	13	ND		1.2	13	14		-	13
Carbon Tetrachloride	TO-15 μg/m ³	ND	1.7					6.6	ND		1.7	6.5	ND		1.2	7.3	ND			6.8	ND			6.4	ND		1.8	
Chlorobenzene	TO-15 μg/m ³	ND	0.4				0.44		ND		0.43		ND		0.47	5.3	ND		0.45		ND			4.7	ND		0.44	
Chloroethane	TO-15 μg/m ³	ND	2.8		ND		2.8	11	ND		2.8	11	ND		2.5	12	ND		2.9	11	ND		2.8	11	ND		1	11
Chloroform	TO-15 μg/m ³	150	0.4				0.44	5.1	220		0.43	5.0	210		0.67	5.7	ND			5.2	ND			5.0	ND		0.44	5.2
Chloromethane	TO-15 μg/m ³	ND	1.5				1.5	22	ND		1.5	21	ND		2.5	24	ND			22	ND			21	ND			22
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND	1.5				1.5	4.2	ND		1.5	4.1	ND		0.83	4.6	ND		1.5		ND			4.0	5.0		1.5	
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		2 4.8			0.92		ND		0.90		ND		0.77				0.94		ND			4.6	ND		0.93	

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 32 of 37)

	Location ID	Ì	VW63B				VW63B				VW64A				VW64B				VW65A				VW65B			1	VW66A	—	—
	Sampling Date/Time		08/16/2021 15	5:18			08/16/2021 1	5:18			08/17/2021 0	9:38			07/15/2021 11	1:41			07/30/2021 0				07/30/2021 1	0:06			07/30/2021 1	1:14	
	Sample Depth (feet)		14.5				14.5	J. 10			5.5	3.30			14.5				5.5	3.00			14.5	3.30			5.5		
	Sample Type		N				FD				N				N				N				N				N		ļ
	Field Sample ID		SG-VW63B-	-02			SG-VW63B	-03			SG-VW64A	-02			SG-VW64B-	01			SG-VM65A	-01			SG-VM65B	-01			SG-VM66A	-01	ļ
	Lab Sample ID		2108390-10)A			2108390-1				2108390-1				2107362A-09	9A			2107684-0				2107684-0				2107684-0		
	Status		Validated	1			Validated	1			Validated	1			Validated				Validated	1			Validated	1			Validated	<u> </u>	
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	l RL	Result	QA Reason	MDL	RL
Cumene	TO-15 μg/m ³	ND		0.65	5.2	ND		0.65	_	ND		0.64	5.1	ND	ł	0.73	_	ND			5.3	ND		0.63	+	ND		0.66	
Cyclohexane	TO-15 μg/m ³	ND		0.59	3.6	ND		0.59		ND		0.58		ND		0.86		9.8		0.61	3.7	ND		0.58		ND		0.60	
Dibromochloromethane	TO-15 μg/m ³	ND		1.5	8.9	ND		1.5		ND		1.5	8.8	ND		1.4	9.9	ND		1.6	9.2	ND		1.5	1	ND		1.6	9.1
Dibromomethane	TO-15 μg/m ³	ND		1.1	30	ND	1	1.1	30	ND	1	1.1	29	ND		1.6	33	ND		1.2	30	ND		1.1	29	ND	1	1.2	30
Ethanol	TO-15 μg/m ³	ND		2.4	20	ND		2.4	20	20		2.4	19	ND		2.4	22	ND		2.5	20	ND		2.4	_	ND		2.5	20
Ethyl Acetate	TO-15 μg/m ³	ND		0.88	15	ND		0.88	_	ND		0.87	15	ND		4.8	17	ND		0.91	15	ND		0.86	_	ND	-	0.90	
Ethylbenzene	TO-15 μg/m ³	ND		1.2		ND		1.2		5.8		1.2	4.5	ND	 	0.84		4.8			4.7	ND		1.2	_	ND	+	1	4.6
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND ND		0.92	4.6	ND		0.92		5.8 ND		0.91	4.5 17	ND	1	1.4		4.8 ND		0.95		ND		0.90		ND ND	1	0.94	
		ND			18		-					1.2		ND	1		19	ND				ND			_	ND	+		6.0
Freon 11				1.3	5.9	ND		1.3	_	ND			5.8			0.75		1			6.0			1.2	_			_	
Freon 12	TO-15 μg/m ³	22		0.82	5.2	21		0.82		12		0.80		18	 	1.0	5.7	ND		0.84		5.5		0.80		ND	1	0.83	
Freon 113	TO-15 μg/m ³	ND		1.3	8.0	ND		1.3		ND		1.2	7.9	ND		1.4	8.9	ND		1.3	8.2	ND		1.2		ND	1	1.3	
Freon 114	TO-15 μg/m ³	ND		1.3	7.3	ND		1.3		ND		1.3	7.2	ND		1.1	8.1	ND		1.3	7.5	ND		1.3		ND		1.3	7.4
Freon 134a	TO-15 μg/m ³	ND		2.2	18	ND		2.2	18	ND		2.1	17	ND		2.6		ND		2.2	18	ND		2.1	17	ND		2.2	18
Heptane	TO-15 μg/m ³	ND		1.0	4.3	ND		1.0	4.3	ND		1.0	4.2	ND		0.85		19		1.0	4.4	ND		1.0		ND		1.0	4.4
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.1	45	ND		4.1	45	ND		4.0	44	ND		5.5	49	ND		4.2	46	ND		4.0	44	ND		4.2	45
Hexachloroethane	TO-15 μg/m ³	ND		41	41	ND		41	41	ND		40	40	ND		45	45	ND		42	42	ND		40	40	ND		41	41
Hexane	TO-15 μg/m ³	530	J 3D	0.68	3.7	200	J 3D	0.68		170		0.66	3.6	ND		0.76	4.1	190		0.69		14		0.66	_	100		0.69	3.8
Iodomethane	TO-15 μg/m ³	ND	UJ 5A	0.79	61	ND	UJ 5A	0.79	_	ND	UJ 5A	0.78	60	ND		3.7	67	ND	UJ 5A	0.81	62	ND	UJ 5A	0.77	_	ND	UJ 5A	0.80	62
Isopropyl ether	TO-15 μg/m ³	ND		0.52	18	ND		0.52	18	ND		0.51	17	ND		1.3	19	ND		0.53	18	ND		0.50	17	ND		0.52	18
m- & p-Xylenes	TO-15 μg/m ³	ND		1.0	4.6	ND		1.0	4.6	18		1.0	4.5	ND		2.8	5.0	10		1.1	4.7	ND		1.0	4.4	ND		1.1	4.6
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.81	15	ND		0.81	15	ND		0.80	15	ND		1.0	17	ND		0.83	16	ND		0.79	15	ND		0.82	15
Methylene Chloride	TO-15 μg/m ³	ND		0.75	36	ND		0.75	36	ND		0.74	36	ND		2.3	40	ND		0.77	37	ND		0.73	35	ND		0.76	37
Naphthalene	TO-15 μg/m ³	ND		4.2	11	ND		4.2	11	ND		4.2	11	ND		0.79	12	ND		4.3	11	ND		4.1	11	ND		4.3	11
o-Xylene	TO-15 μg/m ³	ND		1.1	4.6	ND		1.1	4.6	7.4		1.1	4.5	ND		1.3	5.0	4.7		1.2	4.7	ND		1.1	4.4	ND		1.2	4.6
Propylbenzene	TO-15 μg/m ³	ND		0.86	5.2	ND		0.86	5.2	ND		0.84	5.1	ND		0.32	5.7	ND		0.88	5.3	ND		0.83	5.0	ND		0.87	5.2
Propylene	TO-15 μg/m ³	ND		0.53	7.2	ND		0.53	7.2	ND		0.52	7.1	ND		1.5	8.0	15		0.55	7.4	ND		0.52	7.0	ND		0.54	7.3
Styrene	TO-15 μg/m ³	ND		0.58	4.5	ND		0.58		ND		0.57	4.4	ND		0.58	4.9	ND		0.59		ND		0.56		ND		0.59	
tert-Amyl methyl ether	TO-15 μg/m ³	ND		1.8		ND				ND			17	ND				ND			18	ND		1.8		ND	1	1.9	
tert-Butyl alcohol	TO-15 μg/m ³					ND			13			0.86						ND			13	ND				ND		0.89	
Tetrachloroethene	TO-15 μg/m ³					120				300				230			_	96				43				190		1.2	
Tetrahydrofuran	TO-15 μg/m ³									ND				ND				ND		0.64					_	3.4	1	0.64	
Toluene	TO-15 μg/m ³					ND			4.0					ND	†			37		0.42		ND				10	1	0.41	
TPH - Gasoline	TO-15 μg/m ³					450	J 3D			570				ND				2,000			440					610		440	
trans-1,2-Dichloroethene	TO-15 μg/m ³								4.2						†			ND		_	4.3	ND			_	ND	1	1.1	
trans-1,3-Dichloropropene	TO-15 μg/m ³					ND			4.8			0.81		ND				ND		0.85		ND				ND	1	0.84	
Trichloroethene	TO-15 μg/m ³								5.6			0.80						ND		0.83		ND			_	ND	1	0.82	
Vinyl Acetate	TO-15 μg/m ³			4.0			1						14		+			ND			15	ND		3.9		ND	+	4.0	
Vinyl Bromide	TO-15 μg/m ³								15									ND			19						1	1.3	
-					18		1		18					ND								ND		1.2		ND	+	_	
Vinyl Chloride	TO-15 μg/m ³	ND		0.68	2.7	ND		0.68	2.7	ND		0.66	2.6	ИD		1.2	3.0	ND		0.69	2.7	ND		0.66	2.6	ND		0.69	2.7

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 33 of 37)

	Location ID		VW66B				VW66B			SVM-1	1			SVM-1		I		SVM-2		<u> </u>	SVM-2			SVM-3		—
	Sampling Date/Time	(07/30/2021 12	:06		(07/30/2021 12	2:06		07/29/2021	08:10		(07/29/2021 08	3:37		(07/29/2021 14:12			07/29/2021 1	4:50		07/29/2021 1	2:55	
	Sample Depth (feet)		14.5				14.5			4				14				5			14			4		
	Sample Type		N				FD			N				N				N			N			N		
	Field Sample ID		SG-VM66B-0				SG-VM66B-			SG-SVM1				SG-SVM1B-0				SG-SVM2A-01			SG-SVM2B			SG-SVM3A		
	Lab Sample ID		2107684-10	A			2107684-11			2107684-				2107684-02	:A			2107684-03A			2107684-0			2107684-0		
	Status		Validated				Validated		<u> </u>	Validate	ed			Validated				Validated			Validated	1		Validated	<u></u>	
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason MD	RI	L Result	QA Reason	MDL RL	Result	t QA Reason	MDL	RL
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND		1.5	30	ND		1.5 30	ND		240	4,800	ND		1.5	29	ND	1.5	30) ND		1.4 28	ND		1.4	29
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.47	6.0	ND		0.46 5.9	ND		75	950	ND		0.45	5.8	ND	0.47	6.0	0 ND		0.43 5.5	ND		0.45	5.7
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.72	7.6	ND		0.70 7.4	ND		110	1,200	ND		0.69	7.3	ND	0.70	7.5	5 ND		0.65 6.9	ND		0.68	7.2
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.97	6.0	ND		0.94 5.9	ND		150	950	ND		0.93	5.8	ND	0.96	6.0	0 ND		0.88 5.5	ND		0.92	5.7
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.94	4.5	ND		0.91 4.4	ND		150	710	ND		0.90	4.3	ND	0.92	4.4	4 ND		0.85 4.1	ND		0.89	4.2
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.4	4.4	ND		1.4 4.3	ND		230	690	ND		1.4	4.2	ND	1.4	4.3	3 ND		1.3 4.0	ND		1.4	4.2
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.6	12	ND		2.6 12	ND		410	1,900	ND		2.5	12	ND	2.6	12	2 ND		2.4 11	ND		2.5	11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.7	27	ND		1.6 26	ND		260	4,200	ND		1.6	26	ND	1.6	26	S ND		1.5 24	ND		1.6	25
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.9	33	ND		2.8 32	ND		460	5,200	ND		2.8	32	ND	2.9	32	2 ND		2.6 30	ND		2.7	31
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND		0.63	5.4	ND		0.61 5.3	ND		99	860	ND		0.60	5.2	ND	0.62	5.4	4 13		0.57 5.0	ND		0.60	
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.4	43	ND		1.4 42	ND		220	6,800	ND		1.3	41	ND	1.4	42	2 ND		1.3 39	ND		1.3	40
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.7	8.5	ND		1.6 8.3	ND		260	1,300	ND		1.6	8.2	ND	1.6	8.4	4 ND		1.5 7.8	ND		1.6	8.1
1,2-Dichlorobenzene	TO-15 μg/m ³	ND		0.75	6.7	ND		0.73 6.5	ND		120	1,000	ND		0.72	6.4	ND	0.74	6.6	6 ND		0.68 6.1	ND		0.71	6.3
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.74	4.5	ND		0.72 4.4	ND		120	710	ND		0.71	4.3	ND	0.73	3 4.4	4 ND		0.67 4.1	ND		0.70	4.2
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.2	5.1	ND		1.2 5.0	820		190	810	ND		1.2	4.9	ND	1.2	5.	1 ND		1.1 4.7	ND		1.2	4.8
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.1	5.4	ND		1.1 5.3	ND		180	860	ND		1.1	5.2	ND	1.1	5.4	4 ND		1.0 5.0	ND		1.1	5.2
1,3-Butadiene	TO-15 μg/m ³	ND		0.71	2.4	ND		0.69 2.4	ND		110	390	ND		0.68	2.4	ND	0.70	2.4	4 ND		0.64 2.2	ND		0.67	2.3
1,3-Dichlorobenzene	TO-15 μg/m ³	ND		0.76	6.7	ND		0.74 6.5	ND		120	1,000	ND		0.73	6.4	ND	0.75	6.6	6 ND		0.69 6.1	ND		0.72	6.3
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.79	6.7	ND		0.77 6.5	ND		120	1,000	ND		0.76	6.4	ND	0.78	6.6	6 ND		0.72 6.1	ND		0.75	6.3
1,4-Dioxane	TO-15 μg/m ³	ND		2.4	16	ND		2.3 16	ND		370	2,500	ND		2.3	15	ND	2.3	16	S ND		2.1 14	ND		2.2	15
2,2,4-Trimethylpentane	TO-15 μg/m ³	79		0.61	5.2	76		0.59 5.0	ND		96	820	ND		0.58	5.0	ND	0.60	5.	1 ND		0.55 4.7	ND		0.58	4.9
2-Butanone (Methyl Ethyl Ketone) TO-15 μg/m ³	ND		2.0	13	ND		1.9 13	ND		310	2,100	ND		1.9	12	ND	2.0	13	3 ND		1.8 12	ND		1.9	12
2-Hexanone	TO-15 μg/m ³	ND		0.44	18	ND		0.42 18	ND		69	2,900	ND		0.42	17	ND	0.43	18	3 ND		0.40 16	ND		0.41	17
2-Propanol	TO-15 μg/m ³	ND		0.82	11	ND		0.80 11	ND		130	1,700	34		0.78	10	29	0.8	11	1 17		0.74 9.9	ND		0.77	10
3-Chloropropene	TO-15 μg/m ³	ND		3.0	14	ND		2.9 14	ND		480	2,200	ND		2.9	13	ND	3.0	14	1 ND		2.8 13	ND		2.9	13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.1	5.4	ND		1.1 5.3	ND		170	860	ND		1.1	5.2	ND	1.1	5.4	4 ND		1.0 5.0	ND		1.0	5.2
4-Methyl-2-pentanone	TO-15 μg/m ³	ND		1.1	4.5	ND		1.0 4.4	ND		170	720	ND		1.0	4.4	ND	1.1		5 ND		0.98 4.1	ND		1.0	4.3
Acetone	TO-15 μg/m ³	ND		2.6	26	ND		2.6 26	ND		410	4,200	120		2.5	25	160	2.6	_			2.4 24	ND		2.5	25
Acrolein	TO-15 μg/m ³	ND		1.5	10	ND	UJ 5F	1.5 9.9		UJ 5F	240	1,600	ND	UJ 5F	1.5			UJ 5F 1.5	_		UJ 5F	1.4 9.3		UJ 5F		9.6
Acrylonitrile	TO-15 μg/m ³	ND			9.6	ND		0.57 9.4			93	1,500	ND		0.56			0.58		5 ND		0.54 8.8	4		0.56	_
alpha-Chlorotoluene	TO-15 μg/m ³	ND			5.7	ND		0.50 5.6			81	900	ND		0.50	5.5	ND	0.5	_			0.47 5.2	ND		0.49	
Benzene	TO-15 μg/m ³	ND			3.5	ND		0.65 3.4			100	560	ND			3.4	ND	0.66	_			0.61 3.2			0.63	
Bromodichloromethane	TO-15 μg/m ³	ND		1.1	7.4	ND		1.1 7.2	ND		170	1,200	ND		1.1	7.1	ND	1.1	7.3	3 ND		1.0 6.8			1.0	7.0
Bromoform	TO-15 μg/m ³	ND		1.2	11	ND		1.2 11	ND		190	1,800	ND			11		1.2				1.1 10			_	11
Bromomethane	TO-15 μg/m ³	ND		1.9	43	ND		1.8 42	ND		290	6,800	ND			41		1.8				1.7 39	4		1.8	
Carbon Disulfide	TO-15 μg/m ³	ND		1.4	14	ND		1.3 13	ND		210	2,200	ND		1.3	13	ND	1.3	_			1.2 12			1.3	
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.8		ND		1.8 6.8			290	1,100	ND			6.7	ND	1.8	_			1.7 6.4			1.7	
Chlorobenzene	TO-15 μg/m ³	ND		0.46	5.1	ND		0.45 5.0	ND		73	800	ND		0.44	4.9	ND	0.46		0 ND		0.42 4.6	ND		0.44	4.8
Chloroethane	TO-15 μg/m ³	ND		3.0	12	ND		2.9 11	ND		470	1,800	ND		2.9	11	ND	3.0	12	2 ND		2.7 11	ND		2.8	11
Chloroform	TO-15 μg/m ³	ND		0.46	5.4	ND		0.45 5.3	ND		73	850	ND		0.44	5.2	ND	0.46	5.3	3 ND		0.42 4.9	ND		0.44	5.1
Chloromethane	TO-15 μg/m ³	ND		1.6	23	ND		1.6 22	ND		250	3,600	ND		1.5	22	ND	1.6	23	3 ND		1.5 21	ND		1.5	
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.6	4.4	ND		1.6 4.3	53,000		250	690	63		1.5	4.2	ND	1.6	4.3	3 ND		1.4 4.0	ND		1.5	
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.97	5.0	ND		0.95 4.9	ND		150	790	ND		0.93	4.8	ND	0.96	5.0	0 ND		0.89 4.6	ND		0.92	4.8

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 34 of 37)

	Location ID		VW66B				VW66B			SVM-1				SVM-1				SVM-2				SVM-2			SVM-3	—	\neg
	Sampling Date/Time	(07/30/2021 12	2:06			07/30/2021 12	2:06		07/29/2021				07/29/2021 08	8:37			07/29/2021 14:12	2			07/29/2021 14	l:50		07/29/2021 1	2:55	
	Sample Depth (feet)		14.5				14.5			4				14				5				14			4		
	Sample Type		N				FD			N				N				N				N			N		
	Field Sample ID		SG-VM66B-				SG-VM66B-			SG-SVM1				SG-SVM1B-				SG-SVM2A-01				SG-SVM2B-			SG-SVM3A		
	Lab Sample ID		2107684-10				2107684-11			2107684-				2107684-02				2107684-03A				2107684-04	Α		2107684-0		
	Status		Validated				Validated			Validate	ed			Validated				Validated				Validated			Validated	<u>/</u>	
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL I	Result	QA Reason MD	DL	RL F	esult	QA Reason	MDL RL	Result	QA Reason	MDL	I RL
Cumene	TO-15 μg/m ³	ND		0.69	-	ND		0.67 5.3			110	860	ND		0.66	5.2	ND	0.6	-		ND		0.62 5.0			_	5.2
Cyclohexane	TO-15 μg/m ³	3.8		0.63		ND		0.61 3.7	ND		99	600	ND		0.60	3.7	ND	0.6	-+		ND		0.57 3.5			_	3.6
Dibromochloromethane	TO-15 μg/m ³	ND		1.6	9.4	ND		1.6 9.2	ND		250	1,500	ND		1.6	9.1	ND	1.0		9.3	ND		1.5 8.6				8.9
Dibromomethane	TO-15 μg/m ³	ND		1.2	32	ND		1.2 31	ND		190	5,000	ND		1.2	30	ND	1.3	-+	31	ND		1.1 29	ND		1.1	30
Ethanol	TO-15 μg/m ³	ND		2.6	21	ND		2.5 20	ND		410	3,300	ND		2.5	20	ND	2.0		21	ND		2.4 19	ND		2.4	20
Ethyl Acetate	TO-15 μg/m ³	ND		0.94	16	ND		0.91 16	ND		150	2,500	ND		0.90	15	ND	0.9	_	16	ND		0.85 14	ND		0.88	1 -
Ethylbenzene	TO-15 μg/m ³	ND		1.2	4.8	ND		1.2 4.7	ND		200	760	ND		1.2	4.6	ND	1.3		4.8	ND		1.1 4.4	ND		1.2	
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		0.98	18	ND		0.95 18	ND		150	2,900	ND		0.94	18	ND	0.9	_	18	ND		0.89 17	ND		0.92	
Freon 11	TO-15 μg/m ³	ND		1.3	6.2	ND		1.3 6.1	ND		210	980	ND			6.0	ND	1.3	-		ND		1.2 5.7	ND			5.9
Freon 12	TO-15 μg/m ³	ND		0.87	5.5	ND		0.84 5.3	1		140	860	ND		0.83	5.3	ND	0.8	_	5.4	ND		0.79 5.0				5.2
Freon 113	TO-15 μg/m ³	ND		1.4	8.5	ND		1.3 8.3			210	1,300	ND			8.2	ND	1.3	-		ND		1.2 7.7	ND		1.3	8.0
Freon 114	TO-15 μg/m ³	ND		1.4	7.8	ND		1.3 7.6			220	1,200	ND			7.4	ND	1.0			ND		1.2 7.1	ND			7.3
Freon 134a	TO-15 μg/m ³	ND		2.3	18	ND		2.2 18	ND		360	2,900	ND	<u> </u>	2.2	18	ND	2.3	_	18	ND		2.1 17	ND		2.2	
Heptane	TO-15 μg/m ³	ND		1.1	4.5	ND		1.1 4.4	ND		170	720	ND	 	1.0	4.4	ND	1.	_	4.5	ND		0.99 4.1				4.3
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.3	47	ND		4.2 46	ND		680	7,500	ND	<u> </u>	4.2	45	ND	4.:		47	ND		4.0 43	ND		4.1	45
Hexachloroethane	TO-15 μg/m ³	ND		43	43	ND		42 42	ND		6,800	6,800	ND	<u> </u>	41	41	ND	42	-		ND		39 39	ND		41	41
Hexane	TO-15 μg/m ³	39		0.72		37		0.70 3.8			110	620	ND		0.69	3.8	ND	0.7	_		ND		0.65 3.6				3.7
Iodomethane	TO-15 μg/m ³	ND	UJ 5A	0.84		ND		0.82 63	ND	UJ 5A	130	10,000	ND	UJ 5A	0.80	62	ND	UJ 5A 0.8	_	64	ND	UJ 5A	0.76 59		UJ 5A		61
Isopropyl ether	TO-15 μg/m ³	ND		0.55		ND		0.53 18	ND		86	2,900	ND		0.52	18	ND	0.5	_		ND		0.50 17	ND		_	18
m- & p-Xylenes	TO-15 μg/m ³	ND		1.1	4.8	ND		1.1 4.7	ND		180	760	ND		1.1	4.6	ND	1.		4.8	ND		1.0 4.4	ND			4.6
Methyl <i>tert</i> -butyl ether	TO-15 μg/m ³	ND		0.86		ND		0.84 16	ND		140	2,500	ND		0.82	15	ND	0.8			ND		0.78 14	ND		0.81	1 1
Methylene Chloride	TO-15 μg/m ³	ND		0.79		ND		0.77 38	ND		120	6,100	ND		0.76	37	ND	0.7		38	ND		0.72 35	ND		0.75	
Naphthalene	TO-15 μg/m ³	ND		4.5	12	ND		4.4 11	ND		710	1,800	ND		4.3	11	ND	4.4	_	11	ND		4.1 10	ND		4.2	1 -
o-Xylene	TO-15 μg/m ³	ND		1.2	4.8	ND		1.2 4.7	ND		190	760	ND		1.2	4.6	ND	1.3	2	4.8	ND		1.1 4.4	ND		1.1	4.6
Propylbenzene	TO-15 μg/m ³	ND		0.90	5.4	ND		0.88 5.3	ND		140	860	ND		0.87	5.2	ND	0.8	39	5.4	ND		0.82 5.0	ND		0.86	5.2
Propylene	TO-15 μg/m ³	ND		0.56	7.6	ND		0.55 7.4	ND		89	1,200	15		0.54	7.3	40	0.5	56	7.5	ND		0.51 7.0	ND		0.53	7.2
Styrene	TO-15 μg/m ³	ND		0.61	4.7	ND		0.60 4.6	ND		97	740	ND		0.59	4.5	ND	0.6	60	4.7	ND		0.56 4.3	ND		0.58	4.5
tert-Amyl methyl ether	TO-15 μg/m ³	ND		1.9	18	ND		1.9 18	ND		310	2,900	ND		1.9	18	ND	1.9	9	18	ND		1.8 17	ND		1.8	
tert-Butyl alcohol	TO-15 μg/m ³	ND		0.93	13	ND		0.91 13	ND		150	2,100	ND		0.89	13	ND	0.9	92	13	ND		0.85 12	ND		0.88	13
Tetrachloroethene	TO-15 μg/m ³	35		1.2	7.5	37		1.2 7.3	330,000		190	1,200	460		1.2	7.2	96	1.3	2	7.4	77		1.1 6.8	590		1.1	7.1
Tetrahydrofuran	TO-15 μg/m ³	ND		0.66	3.3	ND		0.64 3.2	ND		100	520	ND		0.64	3.1	ND	0.6	35	3.2	ND		0.60 3.0	ND		0.63	3.1
Toluene	TO-15 μg/m ³	ND		0.43	4.2	ND		0.42 4.1	ND		68	660	ND		0.41	4.0	ND	0.4	12	4.1	ND		0.39 3.8				4.0
TPH - Gasoline	TO-15 μg/m ³	ND		450	450	ND		440 440	ND		72,000	72,000	ND		440	440	ND	45	0	450	ND		410 410			430	430
trans-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.1	4.4	ND		1.1 4.3	ND		180	690	ND		1.1	4.2	ND	1.	1	4.3	ND		1.0 4.0	ND		1.1	4.2
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.88	5.0	ND		0.85 4.9			140	790	ND		0.84	4.8	ND	0.8	36	5.0	ND		0.80 4.6				4.8
Trichloroethene	TO-15 μg/m ³	ND		0.86	6.0	ND		0.84 5.8			140	940	85		0.82	5.7	ND	0.8	35	5.9	ND		0.78 5.4	ND		0.81	5.6
Vinyl Acetate	TO-15 μg/m ³	ND		4.2	16	ND		4.1 15			670	2,500	ND		4.0	15	ND	4.3	2	15	ND		3.8 14	ND			15
Vinyl Bromide	TO-15 μg/m ³	ND		1.3	19	ND		1.3 19	ND		210	3,100	ND		1.3	19	ND	1.3	3	19	ND		1.2 18	ND		1.2	18
Vinyl Chloride	TO-15 μg/m ³	ND		0.72	2.8	ND		0.70 2.8	ND		110	450	ND		0.69	2.7	ND	0.7	71	2.8	ND		0.65 2.6	ND		0.68	2.7

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 35 of 37)

		ation ID		SVM-3		
	ampling Da		1	07/29/2021 1	3:21	
5	ample Dept			14 N		
	Samp Field Sar	le Type		SG-SVM3B	01	
	Lab Sai			2107684-0		
	Lab Sai	Status		Validated		
		Otatus		vandated		
Analyte	Method	Units	Result	QA Reason	MDL	RL
1,1,1,2-Tetrachloroethane	TO-15	μg/m³	ND		1.5	30
1,1,1-Trichloroethane	TO-15	μg/m ³	ND		0.46	5.9
1,1,2,2-Tetrachloroethane	TO-15	μg/m ³	ND		0.70	7.4
1,1,2-Trichloroethane	TO-15	μg/m ³	ND		0.94	5.9
1,1-Dichloroethane	TO-15	μg/m ³	ND		0.91	4.4
1,1-Dichloroethene	TO-15	μg/m ³	ND		1.4	4.3
1,1-Difluoroethane	TO-15	μg/m ³	ND		2.6	12
1,2,3-Trichloropropane	TO-15	μg/m ³	ND		1.6	26
1,2,4-Trichlorobenzene	TO-15	μg/m ³	ND		2.8	32
1,2,4-Trimethylbenzene	TO-15	μg/m³	ND		0.61	5.3
1,2-Dibromo-3-chloropropane	TO-15	μg/m ³	ND		1.4	42
1,2-Dibromoethane (EDB)	TO-15	μg/m ³	ND		1.6	8.3
1,2-Dichlorobenzene	TO-15	μg/m ³	ND		0.73	6.5
1.2-Dichloroethane	TO-15	μg/m ³	ND		0.72	4.4
1,2-Dichloropropane	TO-15	μg/m ³	ND		1.2	5.0
1,3,5-Trimethylbenzene	TO-15	μg/m ³	ND		1.1	5.3
1,3-Butadiene	TO-15	μg/m³			-	
	TO-15	μg/III	ND		0.69	2.4
1,3-Dichlorobenzene		μg/m ³	ND		0.74	6.5
1,4-Dichlorobenzene 1,4-Dioxane	TO-15 TO-15	μg/m ³ μg/m ³	ND ND		0.77 2.3	6.5 16
,	TO-15	μg/m³			1	
2,2,4-Trimethylpentane			ND		0.59	5.0
2-Butanone (Methyl Ethyl Ketone)	TO-15	μg/m ³	ND		1.9	13
2-Hexanone	TO-15	μg/m ³	ND		0.42	18
2-Propanol	TO-15	μg/m ³	ND		0.80	11
3-Chloropropene	TO-15	μg/m ³	ND		2.9	14
4-Ethyltoluene	TO-15	μg/m ³	ND		1.1	5.3
4-Methyl-2-pentanone	TO-15	μg/m ³	ND		1.0	4.4
Acetone	TO-15	μg/m ³	ND		2.6	26
Acrolein	TO-15	μg/m ³	ND	UJ 5F	1.5	9.9
Acrylonitrile	TO-15	μg/m ³	ND		0.57	9.4
alpha-Chlorotoluene	TO-15	μg/m ³	ND		0.50	5.6
Benzene	TO-15	μg/m ³	ND		0.65	3.4
Bromodichloromethane	TO-15	μg/m ³	ND		1.1	7.2
Bromoform	TO-15	μg/m ³	ND		1.2	11
Bromomethane	TO-15	μg/m ³	ND		1.8	42
Carbon Disulfide	TO-15	μg/m ³	ND		1.3	13
Carbon Tetrachloride	TO-15	μg/m ³	ND		1.8	6.8
Chlorobenzene	TO-15	μg/m ³	ND		0.45	5.0
Chloroethane	TO-15	μg/m³	ND		2.9	11
Chloroform	TO-15	μg/m³	ND		0.45	5.3
Chloromethane	TO-15	μg/m ³	ND		1.6	22
cis-1,2-Dichloroethene	TO-15	μg/m³	ND		1.6	4.3
cis-1,3-Dichloropropene	TO-15	μg/m³	ND		0.95	4.9

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 36 of 37)

	Loor	ation ID	1	SVM-3		-				
	Sampling Dat									
	Sample Dept			14	0.21					
		le Type		N.						
	Field Sar		SG-SVM3B-01							
	Lab Sar									
		Status								
Analyte	Method	Units		QA Reason	+	-				
Cumene	TO-15	μg/m ³	ND		0.67	5.3				
Cyclohexane	TO-15	μg/m ³	ND		0.61	3.7				
Dibromochloromethane	TO-15	μg/m ³	ND		1.6	9.2				
Dibromomethane	TO-15	μg/m ³	ND		1.2	31				
Ethanol	TO-15	μg/m ³	ND		2.5	20				
Ethyl Acetate	TO-15	μg/m ³	ND		0.91	16				
Ethylbenzene	TO-15	μg/m ³	ND		1.2	4.7				
Ethyl-tert-butyl ether	TO-15	μg/m ³	ND		0.95	18				
Freon 11	TO-15	μg/m³	ND		1.3	6.1				
Freon 12	TO-15	μg/m ³	ND		0.84	5.3				
Freon 113	TO-15	μg/m³	ND		1.3	8.3				
Freon 114	TO-15	μg/m³	ND		1.3	7.6				
Freon 134a	TO-15	μg/m³	ND		2.2	18				
Heptane	TO-15	μg/m³	ND		1.1	4.4				
Hexachlorobutadiene	TO-15	μg/m³	ND		4.2	46				
Hexachloroethane	TO-15	μg/m ³	ND		42	42				
Hexane	TO-15	μg/m ³	ND		0.70	3.8				
Iodomethane	TO-15	μg/m³	ND	UJ 5A	0.82	63				
Isopropyl ether	TO-15	μg/m³	ND		0.53	18				
m- & p-Xylenes	TO-15	μg/m³	ND		1.1	4.7				
Methyl tert-butyl ether	TO-15	μg/m³	ND		0.84	16				
Methylene Chloride	TO-15	μg/m ³	ND		0.77	38				
Naphthalene	TO-15	μg/m ³	ND		4.4	11				
o-Xylene	TO-15	μg/m³	ND		1.2	4.7				
Propylbenzene	TO-15	μg/m ³	ND		0.88	5.3				
Propylene	TO-15	μg/m ³	ND		0.55	7.4				
Styrene	TO-15	μg/m ³	ND		0.60	4.6				
tert-Amyl methyl ether	TO-15	μg/m ³	ND		1.9	18				
tert-Butyl alcohol	TO-15	μg/m ³	ND		0.91	13				
Tetrachloroethene	TO-15	μg/m ³	140		1.2	7.3				
Tetrahydrofuran	TO-15	μg/m ³	ND		0.64	3.2				
Toluene	TO-15	μg/m ³	ND		0.42	4.1				
TPH - Gasoline	TO-15	μg/m ³	ND		440	440				
trans-1,2-Dichloroethene	TO-15	μg/m ³	ND		1.1	4.3				
trans-1,3-Dichloropropene	TO-15	μg/m ³	ND		0.85	4.9				
Trichloroethene	TO-15	μg/m ³	ND		0.84	5.8				
Vinyl Acetate	TO-15	μg/m ³			4.1	15				
Vinyl Bromide	TO-15	μg/m ³	ND		1.3	19				
Vinyl Chloride	TO-15	μg/m ³	ND		0.70	2.8				
,. Omenae	10 10	٠٠٠٠.	140	l	0.70	2.0				

CURRENT INVESTIGATION VALIDATED SOIL GAS ANALYTICAL RESULTS (Page 37 of 37)

Notes:

Concentrations detected above the laboratory MDL are shown in **bold**.

Sample depths are referenced to the top of soil (bottom of pavement).

 μ g/m³ = micrograms per cubic meter

FD = field duplicate sample

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

TO = Toxic Organics

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = Estimated concentration

J- = Estimated concentration; potential low bias

UJ = Estimated RL; analyte not detected; potential for false negative result at the RL

Data Validation Reason Code Definitions:

2A- = Low laboratory control sample recovery

2A- = High laboratory control sample recovery

3D = Field duplicate imprecision

3E = Field replicate imprecision

4D = Leak check compound greater than 10 times the lowest RL; potential leak

5A = Initial calibration did not meet method requirement

5B- = Low continuing calibration recovery

5F = Estimated concentration. Potential concerns for the measurement of acrolein using Method TO-15.

6E = Detected above the calibration range

6G = Reported between the laboratory MDL and RL

CURRENT INVESTIGATION VALIDATED SUB-SLAB VAPOR ANALYTICAL RESULTS (Page 1 of 5)

		1				1				1															
	Location ID		FSS01				FSS01				FSS02				GSS01				GSS02				HSS01		
	Sampling Date/Time		08/17/2021 11:	22			08/17/2021 1	1:22			08/17/2021 1	1:40			08/17/2021 12:2	23		(08/17/2021 12	:50			07/15/2021 15	5:13	
	Sample Type		N 201/ F2004 0	2			FD SSV ESS01	02			N SSV ESSOS	02			N 66V 66601.0	2			N CCCOO	22			N COV HCCO1	01	
	Field Sample ID Lab Sample ID		SSV-FSS01-0 2108390-20A				SSV-FSS01- 2108390-21				SSV-FSS02- 2108390-22				SSV-GSS01-0 2108390-23A				SSV-GSS02- 2108390-24				SSV-HSS01- 2107362B-14		
	Status		Validated				Validated	A			Validated				Validated				Validated	٦			Validated		
	Otatus		vandated				vandated				vandated				vandated				vandated				vandated		
Analyte	Method Units	Result	QA Reason I	ИDL	RL	Result	QA Reason	MDL	RL	Resul	t QA Reason	MDL	RL	Resul	t QA Reason N	/DL	RL	Result	QA Reason	MDL	RL	Resul	t QA Reason	MDL	RL
1,1,1,2-Tetrachloroethane	TO-15 μg/m ³	ND		1.4	28	ND		1.4	28	ND		1.4	28	ND		1.4	28	ND		1.5	29	ND		1.4	28
1,1,1-Trichloroethane	TO-15 μg/m ³	ND		0.44	5.6	ND		0.44	5.6	ND		0.43	5.5	ND	C).44	5.6	ND		0.46	5.8	ND		0.43	5.5
1,1,2,2-Tetrachloroethane	TO-15 μg/m ³	ND		0.66	7.1	ND		0.66	7.1	ND		0.65	6.9	ND	C	0.66	7.1	ND		0.69	7.3	ND		0.65	6.9
1,1,2-Trichloroethane	TO-15 μg/m ³	ND		0.90	5.6	ND		0.90	5.6	ND		0.88	5.5	ND	C	0.90	5.6	ND		0.94	5.8	ND		0.88	5.5
1,1-Dichloroethane	TO-15 μg/m ³	ND		0.87	4.2	ND		0.87	4.2	ND		0.85	4.1	ND	C).87	4.2	ND		0.90	4.3	ND		0.85	4.1
1,1-Dichloroethene	TO-15 μg/m ³	ND		1.3	4.1	ND		1.3	4.1	ND		1.3	4.0	ND		1.3	4.1	ND		1.4	4.2	ND		1.3	4.0
1,1-Difluoroethane	TO-15 μg/m ³	ND		2.4	11	ND		2.4	11	ND		2.4	11	ND		2.4	11	ND		2.5	12	18		2.4	11
1,2,3-Trichloropropane	TO-15 μg/m ³	ND		1.6	25	ND		1.6	25	ND		1.5	24	ND		1.6	25	ND		1.6	26	ND		1.5	24
1,2,4-Trichlorobenzene	TO-15 μg/m ³	ND		2.7	30	ND		2.7	30	ND		2.6	30	ND		2.7	30	ND		2.8	32	ND		2.6	30
1,2,4-Trimethylbenzene	TO-15 μg/m ³	ND	1	0.58	5.1	ND		0.58	5.1	10		0.57	5.0	ND	C).58	5.1	ND		0.61	5.2	ND		0.57	5.0
1,2-Dibromo-3-chloropropane	TO-15 μg/m ³	ND		1.3	40	ND		1.3	40	ND		1.3	39	ND		1.3	40	ND		1.3	41	ND		1.3	39
1,2-Dibromoethane (EDB)	TO-15 μg/m ³	ND		1.5	7.9	ND		1.5	7.9	ND		1.5	7.8	ND		1.5	7.9	ND		1.6	8.2	ND		1.5	7.8
1,2-Dichlorobenzene	TO-15 μg/m ³	ND	1	0.70	6.2	ND		0.70	6.2	ND		0.68	6.1	ND	C).70	6.2	ND		0.72	6.4	ND		0.68	6.1
1,2-Dichloroethane	TO-15 μg/m ³	ND		0.68	4.2	ND		0.68	4.2	ND		0.67	4.1	ND	C	0.68	4.2	ND		0.71	4.3	ND		0.67	4.1
1,2-Dichloropropane	TO-15 μg/m ³	ND		1.1	4.8	ND		1.1	4.8	ND		1.1	4.7	ND		1.1	4.8	ND		1.2	4.9	ND		1.1	4.7
1,3,5-Trimethylbenzene	TO-15 μg/m ³	ND		1.0	5.1	ND		1.0	5.1	ND		1.0	5.0	ND		1.0	5.1	ND		1.1	5.3	ND		1.0	5.0
1,3-Butadiene	TO-15 μg/m ³	ND		0.66	2.3	ND		0.66	2.3	ND		0.64	2.2	ND	C	0.66	2.3	ND		0.68	2.4	ND		0.64	2.2
1,3-Dichlorobenzene	TO-15 μg/m ³	ND	1	0.71	6.2	ND		0.71	6.2	ND		0.69	6.1	ND	C).71	6.2	ND		0.74	6.4	ND		0.69	6.1
1,4-Dichlorobenzene	TO-15 μg/m ³	ND		0.74	6.2	ND		0.74	6.2	ND		0.72	6.1	ND	C).74	6.2	ND		0.76	6.4	ND		0.72	6.1
1,4-Dioxane	TO-15 μg/m ³	ND		2.2	15	ND		2.2	15	ND		2.1	14	ND		2.2	15	ND		2.3	15	ND		2.1	14
2,2,4-Trimethylpentane	TO-15 μg/m ³	ND	1	0.56	4.8	ND		0.56	4.8	ND		0.55	4.7	ND	C).56	4.8	ND		0.59	5.0	ND		0.55	4.7
2-Butanone (Methyl Ethyl Keton	e) TO-15 μg/m ³	ND		1.8	12	ND		1.8	12	ND		1.8	12	ND		1.8	12	ND		1.9	13	ND		1.8	12
2-Hexanone	TO-15 μg/m ³	ND		0.40	17	ND		0.40	17	ND		0.40	16	ND	C).40	17	ND		0.42	18	ND		0.40	16
2-Propanol	TO-15 μg/m ³	ND	1	0.76	10	ND		0.76	10	ND		0.74	9.9	ND	C).76	10	31		0.79	10	26		0.74	9.9
3-Chloropropene	TO-15 μg/m ³	ND		2.8	13	ND		2.8	13	ND		2.8	13	ND		2.8	13	ND		2.9	13	ND		2.8	13
4-Ethyltoluene	TO-15 μg/m ³	ND		1.0	5.1	ND		1.0	5.1	8.3		1.0	5.0	ND			5.1	ND		1.1	_	ND		1.0	5.0
4-Methyl-2-pentanone	TO-15 μg/m ³			1.0	4.2	ND		1.0	4.2	ND		0.98		ND		1.0	4.2	ND			4.4	ND		0.98	
Acetone	TO-15 μg/m ³			2.4		ND			24	ND		2.4		ND]	2.4	24	ND			25	56		2.4	
Acrolein	TO-15 μg/m ³	ND			9.4	ND	UJ 5F		9.4		UJ 5F	1.4		ND	+		9.4	ND	UJ 5F		9.8	ND	UJ 5F	1.4	
Acrylonitrile	TO-15 μg/m ³	ND			8.9			0.55		ND		0.54		ND			8.9	ND			9.3	ND		0.54	8.8
alpha-Chlorotoluene	TO-15 μg/m ³	ND			5.3				5.3	ND		0.47		ND			5.3	ND			5.5	ND		0.47	
Benzene	TO-15 μg/m ³	ND			3.3			0.62		ND		0.61		ND	C	0.62	3.3	ND			3.4	ND		0.61	
Bromodichloromethane	TO-15 μg/m ³	ND		1.0	6.9	ND		1.0	6.9	ND		1.0	6.8	ND		1.0	6.9	ND		1.1	7.2	ND		1.0	6.8
Bromoform	TO-15 μg/m ³	ND		1.1	11	ND		1.1	11	ND		1.1		ND		1.1	11	ND			11	ND		1.1	-
Bromomethane	TO-15 μg/m ³	ND		1.7	40	ND		1.7	40	ND		1.7	1	ND		1.7	40	ND			42	ND		1.7	
Carbon Disulfide	TO-15 μg/m ³	ND		1.2	13	ND		1.2	13	ND		1.2	12	ND		1.2	13	ND		1.3	13	ND		1.2	
Carbon Tetrachloride	TO-15 μg/m ³	ND		1.7	6.5	ND		1.7	6.5	ND		1.7		ND			6.5	ND			6.7	ND		1.7	
Chlorobenzene	TO-15 μg/m ³	ND		0.43	4.7	ND		0.43	4.7	ND		0.42	4.6	ND	C	0.43	4.7	ND			4.9	ND		0.42	4.6
Chloroethane	TO-15 μg/m ³	ND		2.8	11	ND		2.8	11	ND		2.7	11	ND		2.8	11	ND			11	ND		2.7	
Chloroform	TO-15 μg/m ³			0.43	5.0	ND		0.43	5.0	ND		0.42	4.9	ND	C	0.43	5.0	ND		0.45	5.2	ND		0.42	
Chloromethane	TO-15 μg/m ³	ND		1.5	21	ND		1.5	21	ND		1.5	21	ND		1.5	21	ND		1.6	22	ND		1.5	21

CURRENT INVESTIGATION VALIDATED SUB-SLAB VAPOR ANALYTICAL RESULTS (Page 2 of 5)

	Location ID		FSS01				FSS01				FSS02				GSS01				GSS02			HSS01			
	Sampling Date/Time	(08/17/2021 11	:22			08/17/2021 1	1:22			08/17/2021 11	1:40			08/17/2021 12	2:23		(08/17/2021 1	2:50		07/15/2021 15:13			
	Sample Type		N				FD				N				N			N				N SSV HSS01 01			
	Field Sample ID		SSV-FSS01-				SSV-FSS01				SSV-FSS02-				SSV-GSS01-				SSV-GSS02				SSV-HSS01		
	Lab Sample ID Status		2108390-20 Validated	4			2108390-2 ² Validated				2108390-22 Validated	А			2108390-23 Validated	А			2108390-2 Validated				2107362B-1 Validated	4A	
	Status		validated				validated				validated				vanuateu				valluated				validated		
Analyte	Method Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL
cis-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.5	4.1	ND		1.5	4.1	ND		1.4	4.0	ND		1.5	4.1	ND		1.5	4.2	ND		1.4	4.0
cis-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.90	4.7	ND		0.90	4.7	ND		0.89	4.6	ND		0.90	4.7	ND		0.94	4.8	ND		0.89	4.6
Cumene	TO-15 μg/m ³	ND		0.64	5.1	ND		0.64	5.1	ND		0.62	5.0	ND		0.64	5.1	ND		0.66	5.2	ND		0.62	5.0
Cyclohexane	TO-15 μg/m ³	ND		0.58	3.5	ND		0.58	3.5	ND		0.57	3.5	ND		0.58	3.5	ND		0.61	3.7	ND		0.57	3.5
Dibromochloromethane	TO-15 μg/m ³	ND		1.5	8.8	ND		1.5	8.8	ND		1.5	8.6	ND		1.5	8.8	ND		1.6	9.1	ND		1.5	8.6
Dibromomethane	TO-15 μg/m ³	ND		1.1	29	ND		1.1	29	ND		1.1	29	ND		1.1	29	ND		1.2	30	ND		1.1	29
Ethanol	TO-15 μg/m ³	ND		2.4	19	ND		2.4	19	22		2.4	19	ND		2.4	19	30		2.5	20	ND		2.4	19
Ethyl Acetate	TO-15 μg/m ³	ND		0.87	15	ND		0.87	15	ND		0.85	14	ND		0.87	15	ND		0.90		ND		0.85	14
Ethylbenzene	TO-15 μg/m ³	ND		1.2	4.5	ND		1.2	4.5	ND		1.1	4.4	ND		1.2	4.5	ND		1.2	1	ND		1.1	4.4
Ethyl-tert-butyl ether	TO-15 μg/m ³	ND		0.91	17	ND		0.91	17	ND		0.89	17	ND		0.91	17	ND		0.94	18	ND		0.89	17
Freon 11	TO-15 μg/m ³	ND		1.2	5.8	ND		1.2	5.8	ND		1.2	5.7	ND		1.2	5.8	ND		1.3	6.0	33		1.2	5.7
Freon 12	TO-15 μg/m ³	ND		0.80	5.1	ND		0.80	5.1	ND		0.79	5.0	ND		0.80	5.1	ND		0.84	5.3	ND		0.79	5.0
Freon 113	TO-15 μg/m ³	ND		1.2	7.9	ND		1.2	7.9	ND		1.2	7.7	ND		1.2	7.9	ND		1.3	-	ND			7.7
Freon 114	TO-15 μg/m ³	ND		1.3	7.2	ND		1.3	7.2	ND		1.2	7.1	ND		1.3	7.2	ND		1.3	7.5	ND		_	7.1
Freon 134a	TO-15 μg/m ³	ND		2.1	17	ND		2.1	17	ND		2.1	17	ND		2.1	17	ND		2.2	18	ND		2.1	17
Heptane	TO-15 μg/m ³	ND		1.0	4.2	ND		1.0	4.2	ND		0.99	4.1	ND		1.0	4.2	ND		1.0	4.4	ND		0.99	4.1
Hexachlorobutadiene	TO-15 μg/m ³	ND		4.0	44	ND		4.0	44	ND		4.0	43	ND		4.0	44	ND		4.2	46	ND		4.0	43
Hexachloroethane	TO-15 μg/m ³	ND		40	40	ND		40	40	ND		39	39	ND		40	40	ND		41	41	ND		39	39
Hexane	TO-15 μg/m ³	77	J 3D	0.66	3.6	54	J 3D	0.66	3.6	97		0.65		50		0.66	3.6	75		0.69	3.8	ND		1	
lodomethane	TO-15 μg/m ³	ND	UJ 5A	0.78	60	ND	UJ 5A	0.78	60	ND	UJ 5A	0.76		ND	t	0.78		ND	UJ 5A	0.81		ND	UJ 5A	0.76	
Isopropyl ether	TO-15 μg/m ³	ND		0.51	17	ND		0.51	17	ND		0.50		ND		0.51	17	ND		0.53		ND		0.50	17
m,p-Xylene	TO-15 μg/m ³	4.8		1.0	4.5	5.5		1.0	4.5	15		1.0	4.4	5.5		1.0	4.5	7.5		1.1	4.6	5.8		1.0	4.4
Methyl tert-butyl ether	TO-15 μg/m ³	ND		0.80	15	ND		0.80	15	ND		0.78	14	ND		0.80	15	ND		0.83	1	ND		0.78	
Methylene Chloride	TO-15 μg/m ³	ND		0.74	36	ND		0.74	36	ND		0.72	35	ND		0.74	36	ND		0.76	†	ND		0.72	35
Naphthalene	TO-15 μg/m ³	ND		4.2	11	ND		4.2	11	ND		4.1	10	ND		4.2	11	ND		4.3	11	ND		4.1	10
o-Xylene	TO-15 μg/m ³	ND		1.1	4.5	ND		1.1	4.5	7.1		1.1	4.4	ND		1.1	4.5	ND		1.2	4.6	ND		_	4.4
Propylbenzene	TO-15 μg/m ³			0.84	5.1	ND		0.84	5.1	ND		0.82		ND			5.1				5.3				
Propylene	TO-15 μg/m ³	ND			7.1	ND		0.52		8.2		0.51		ND		0.52		ND			7.4	6.8	J 6G	0.51	
Styrene	TO-15 μg/m ³	ND		0.57	4.4	ND		0.57		ND		0.56				0.57		ND		0.59		ND		0.56	
tert-Amyl methyl ether	TO-15 μg/m ³	ND		1.8	17	ND		1.8	17	ND		1.8	17	ND		1.8	1	ND		1.9		ND		1.8	17
tert-Butyl alcohol	TO-15 μg/m ³	ND		0.86		ND		0.86	12	ND		0.85		ND		0.86		ND		0.90	-	ND		0.85	
Tetrachloroethene	TO-15 μg/m ³	9.4		1.1	7.0			1.1	7.0	63		1.1		ND		1.1	7.0	300		1.2	1	750		1.1	
Tetrahydrofuran	TO-15 μg/m ³	ND			3.0			0.61		ND			3.0				3.0	4.6		0.64		ND		0.60	
Toluene	TO-15 μg/m ³	ND			3.9			0.40		7.7		0.39					3.9	4.3			4.0	4.2		0.39	
TPH ref. to Gasoline (MW=100)		ND		420	420				420	530			410			420		490		440				410	
trans-1,2-Dichloroethene	TO-15 μg/m ³	ND		1.0	4.1	ND		1.0	4.1	ND		1.0		ND		1.0	1	ND		1.1		ND		1.0	
trans-1,3-Dichloropropene	TO-15 μg/m ³	ND		0.81	4.7	ND		0.81	4.7	ND		0.80		ND		0.81	4.7	ND		0.84	†	ND		0.80	
Trichloroethene	TO-15 μg/m ³	ND			5.5	ND		0.80	5.5	ND			5.4	ND		0.80	5.5	ND		0.83	-	21		0.78	
Vinyl Acetate	TO-15 μg/m ³	ND		3.9	14	ND		3.9	14	ND		3.8	14	ND		3.9		ND		4.1	1	ND		3.8	
Vinyl Bromide	TO-15 μg/m ³	ND		1.2	18	ND		1.2	18	ND	†	1.2	18	ND		1.2		ND		1.3	-	ND		1.2	
•											1														
Vinyl Chloride	TO-15 μg/m ³	ND			2.6			0.66				0.65					2.6				2.7			0.65	_

CURRENT INVESTIGATION VALIDATED SUB-SLAB VAPOR ANALYTICAL RESULTS (Page 3 of 5)

	Sampling Da Samp Field Sa	le Type		HMBSS0 ⁻ 08/17/2021 1 N SSV-HMBSS0 2108390-28	3:22)1-02	JSS01 08/17/2021 13:45 N SSV-JSS01-02 2108390-26A						
	Lab Sa	Status		Validated			Validated					
Analyte	Method	Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL		
1,1,1,2-Tetrachloroethane	TO-15	μg/m³	ND		1.4	28	ND		1.4	29		
1,1,1-Trichloroethane	TO-15	μg/m ³	ND		0.44	5.6	ND		0.45	5.7		
1,1,2,2-Tetrachloroethane	TO-15	μg/m ³	ND		0.66	7.1	ND		0.68	7.2		
1,1,2-Trichloroethane	TO-15	μg/m³	ND		0.90	5.6	ND		0.92	5.7		
1,1-Dichloroethane	TO-15	μg/m³	ND		0.87	4.2	ND		0.89	4.2		
1,1-Dichloroethene	TO-15	μg/m³	ND		1.3	4.1	ND		1.4	4.2		
1,1-Difluoroethane	TO-15	μg/m³	ND		2.4	11	ND		2.5	11		
1,2,3-Trichloropropane	TO-15	μg/m³	ND		1.6	25	ND		1.6	25		
1,2,4-Trichlorobenzene	TO-15	μg/m³	ND		2.7	30	ND		2.7	31		
1,2,4-Trimethylbenzene	TO-15	μg/m³	ND		0.58	5.1	ND		0.60	5.2		
1,2-Dibromo-3-chloropropane	TO-15	μg/m³	ND		1.3	40	ND		1.3	40		
1,2-Dibromoethane (EDB)	TO-15	μg/m³	ND		1.5	7.9	ND		1.6	8.1		
1,2-Dichlorobenzene	TO-15	μg/m³	ND		0.70	6.2	ND		0.71	6.3		
1,2-Dichloroethane	TO-15	μg/m³	ND		0.68	4.2	ND		0.70	4.2		
1,2-Dichloropropane	TO-15	μg/m³	ND		1.1	4.8	ND		1.2	4.8		
1,3,5-Trimethylbenzene	TO-15	μg/m³	ND		1.0	5.1	ND		1.1	5.2		
1,3-Butadiene	TO-15	μg/m³	ND		0.66	2.3	ND		0.67	2.3		
1,3-Dichlorobenzene	TO-15	μg/m³	ND		0.71	6.2	ND		0.72	6.3		
1,4-Dichlorobenzene	TO-15	μg/m³	ND		0.74	6.2	ND		0.75	6.3		
1,4-Dioxane	TO-15	μg/m³	ND		2.2	15	ND		2.2	15		
2,2,4-Trimethylpentane	TO-15	μg/m³	ND		0.56	4.8	ND		0.58	4.9		
2-Butanone (Methyl Ethyl Ketone)	TO-15	μg/m³	ND		1.8	12	ND		1.9	12		
2-Hexanone	TO-15	μg/m³	ND		0.40	17	ND		0.41	17		
2-Propanol	TO-15	μg/m³	13		0.76	10	20		0.77	10		
3-Chloropropene	TO-15	μg/m³	ND		2.8	13	ND		2.9	13		
4-Ethyltoluene	TO-15	μg/m³	ND		1.0	5.1	ND		1.0	5.2		
4-Methyl-2-pentanone	TO-15	μg/m³	ND		1.0	4.2	ND		1.0	4.3		
Acetone	TO-15	μg/m ³	ND		2.4	24	ND		2.5	25		
Acrolein	TO-15	μg/m³	ND	UJ 5F	1.4	9.4	ND	UJ 5F	1.4	9.6		
Acrylonitrile	TO-15	μg/m ³	ND		0.55	8.9	ND		0.56	9.1		
alpha-Chlorotoluene	TO-15	μg/m ³	ND		0.48	5.3	ND		0.49	5.4		
Benzene	TO-15	μg/m ³	ND		0.62	3.3	ND		0.63	3.4		
Bromodichloromethane	TO-15	μg/m ³	ND		1.0	6.9	ND		1.0	7.0		
Bromoform	TO-15	μg/m ³	ND		1.1	11	ND		1.1	11		
Bromomethane	TO-15	μg/m ³	ND		1.7	40	ND		1.8	41		
Carbon Disulfide	TO-15	μg/m ³	ND		1.2	13	32		1.3	13		
Carbon Tetrachloride	TO-15	μg/m ³	ND		1.7	6.5	ND		1.7	6.6		
Chlorobenzene	TO-15	μg/m ³	ND		0.43	4.7	ND		0.44	4.8		
Chloroethane	TO-15	μg/m ³	ND		2.8	11	ND		2.8	11		
Chloroform	TO-15	μg/m ³	ND		0.43	5.0	ND		0.44	5.1		
Chloromethane	TO-15	μg/m³	ND		1.5	21	ND		1.5	22		

CURRENT INVESTIGATION VALIDATED SUB-SLAB VAPOR ANALYTICAL RESULTS (Page 4 of 5)

			i										
		ation ID		HMBSS0 ²			JSS01						
	Sampling Da		(08/17/2021 1	3:22		08/17/2021 13:45						
	•	le Type	_	N			N 99V 19901 02						
	Field Sar		١	SSV-HMBSS0		SSV-JSS01-02 2108390-26A							
	Lab Saı	Status		2108390-25 Validated				Validated					
		Status		valluateu				validated					
Analyte	Method	Units	Result	QA Reason	MDL	RL	Result	QA Reason	MDL	RL			
cis-1,2-Dichloroethene	TO-15	μg/m³	ND		1.5	4.1	ND		1.5	4.2			
cis-1,3-Dichloropropene	TO-15	μg/m³	ND		0.90	4.7	ND		0.92	4.8			
Cumene	TO-15	μg/m³	ND		0.64	5.1	ND		0.65	5.2			
Cyclohexane	TO-15	μg/m ³	ND		0.58	3.5	ND		0.59	3.6			
Dibromochloromethane	TO-15	μg/m ³	ND		1.5	8.8	ND		1.5	8.9			
Dibromomethane	TO-15	μg/m³	ND		1.1	29	ND		1.1	30			
Ethanol	TO-15	μg/m ³	ND		2.4	19	44		2.4	20			
Ethyl Acetate	TO-15	μg/m³	ND		0.87	15	ND		0.88	15			
Ethylbenzene	TO-15	μg/m³	ND		1.2	4.5	ND		1.2	4.6			
Ethyl-tert-butyl ether	TO-15	μg/m ³	ND		0.91	17	ND		0.92	18			
Freon 11	TO-15	μg/m ³	ND		1.2	5.8	ND		1.3	5.9			
Freon 12	TO-15	μg/m ³	ND		0.80	5.1	ND		0.82	5.2			
Freon 113	TO-15	μg/m ³	ND		1.2	7.9	ND		1.3	8.0			
Freon 114	TO-15	μg/m ³	ND		1.3	7.2	ND		1.3	7.3			
Freon 134a	TO-15	μg/m ³	ND		2.1	17	ND		2.2	18			
Heptane	TO-15	μg/m ³	ND		1.0	4.2	ND		1.0	4.3			
Hexachlorobutadiene	TO-15	μg/m ³	ND		4.0	44	ND		4.1	45			
Hexachloroethane	TO-15	μg/m ³	ND		40	40	ND		41	41			
Hexane	TO-15	μg/m ³	58		0.66	3.6	120		0.68	3.7			
lodomethane	TO-15	μg/m ³	ND	UJ 5A	0.78	60	ND	UJ 5A	0.79	61			
Isopropyl ether	TO-15	μg/m ³	ND		0.51	17	ND		0.52	18			
m,p-Xylene	TO-15	μg/m ³	6.7		1.0	4.5	9.5		1.0	4.6			
Methyl tert-butyl ether	TO-15	μg/m ³	ND		0.80	15	ND		0.81	15			
Methylene Chloride	TO-15	μg/m ³	ND		0.74	36	ND		0.75	36			
Naphthalene	TO-15	μg/m ³	ND		4.2	11	ND		4.2	11			
o-Xylene	TO-15	μg/m ³	ND		1.1	4.5	ND		1.1	4.6			
Propylbenzene	TO-15	μg/m ³	ND		0.84		ND		0.86	5.2			
Propylene	TO-15	μg/m ³			0.52	7.1	ND		0.53	7.2			
Styrene	TO-15	μg/m ³	ND		0.57	4.4	ND		0.58	4.5			
tert-Amyl methyl ether	TO-15	μg/m ³			1.8	17	ND		1.8	18			
tert-Butyl alcohol	TO-15	μg/m ³	ND		0.86	12	ND		0.88	13			
Tetrachloroethene	TO-15	μg/m ³	72		1.1	7.0	23		1.1	7.1			
Tetrahydrofuran	TO-15	μg/m ³	ND		0.61	3.0	ND		0.63	3.1			
Toluene	TO-15	μg/m ³	ND		0.40	3.9	5.2		0.41	4.0			
TPH ref. to Gasoline (MW=100)	TO-15	μg/m ³	ND		420	420	490		430	430			
trans-1,2-Dichloroethene	TO-15	μg/m ³	ND		1.0	4.1	ND		1.1	4.2			
trans-1,3-Dichloropropene	TO-15	μg/m ³	ND		0.81	4.7	ND		0.83	4.8			
Trichloroethene	TO-15	μg/m ³	ND		0.80	5.5	ND		0.81	5.6			
Vinyl Acetate	TO-15	μg/m ³	ND		3.9	14	ND		4.0	15			
Vinyl Bromide	TO-15	μg/m ³	ND		1.2	18	ND		1.2	18			
Vinyl Chloride	TO-15	μg/m ³	ND		0.66	2.6	ND		0.68				
	10-10	٠٠٠.	,,,,		5.50	2.0	110		0.00	/			

CURRENT INVESTIGATION VALIDATED SUB-SLAB VAPOR ANALYTICAL RESULTS (Page 5 of 5)

Notes:

Concentrations detected above the laboratory MDL are shown in **bold**.

 μ g/m³ = micrograms per cubic meter

FD = field duplicate sample

ID = identification

MDL = method detection limit

N = normal sample

ND = not detected above the laboratory MDL

QA = quality assurance data validation qualifier

RL = reporting limit

TO = Toxic Organics

TPH = total petroleum hydrocarbons

Data Validation Qualifier Definitions:

J = Estimated concentration

UJ = Estimated RL; analyte not detected; potential for false negative result at the RL

Data Validation Reason Code Definitions:

3D = Field duplicate imprecision

5A = Initial calibration did not meet method requirement

5F = Estimated concentration. Potential concerns for the measurement of acrolein using Method TO-15.

6G = Reported between the laboratory MDL and RL